Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} &Gal(F_0(v)/F_0) =\{\rho_{1}, \rho_{2},..., \rho_{6}\} =S_3 : \ Galois \ group \ of \ F_0(v)/F_0 \notag \\ \notag \\ & \ Composition \ series \ of \ Galois \ group \ S_3 \notag \\ \end{align} \begin{align} &S_3 & &\rhd & &A_3 & &\rhd & &e \\ &\updownarrow & & & &\updownarrow & & & &\updownarrow \notag \\ &F_0 & &\rightarrow & &F_1 & &\rightarrow & &F_2 \ \ ( \cong F_0(v) ) \\ \end{align} \begin{align} & \qquad \qquad \Downarrow \notag \\ \notag \\ & Galois \ extension & & & &Galois \ Group \notag \\ \notag \\ &[1] \quad [ \ F_1:F_0 \ ]=2 & &\rightarrow & &Gal(F_1/F_0) = S_3/A_3 \cong C_2 \\ \notag \\ &[2] \quad [ \ F_2:F_1 \ ]=3 & &\rightarrow & &Gal(F_2/F_1) = A_3/e \cong C_3\\ \end{align}
\begin{align} &S_3=\{\rho_{1},\rho_{2},\rho_{3},\rho_{4},\rho_{5},\rho_{6}\}, \quad A_3=\{\rho_{1},\rho_{4},\rho_{5}\}, \quad e=\{\rho_{1}\} \notag \\ \notag \\ &\left\{ \begin{array}{l} S_3/A_3 \cong C_2 \equiv \{\kappa_1,\kappa_2\}, \quad \kappa_1=\{\rho_{1},\rho_{4},\rho_{5}\} ,\quad \kappa_2=\{\rho_{2},\rho_{3},\rho_{6}\}\\ A_3/e \cong C_3=\{\rho_{1},\rho_{4},\rho_{5}\}\\ \end{array} \right. \notag \\ \end{align}
Step 1 LRT (Lagrange Resolvent Transformation)
\begin{align}
& h_0=\prod_{\rho_i \in \kappa_1 }\rho_i(x-v)=(x-v_1)(x-v_4)(x-v_5) \\
&h_1=\prod_{\rho_i \in \ \kappa_2}\rho_i(x-v)=(x-v_2)(x-v_3)(x-v_6) \\
\notag \\
& \begin{bmatrix}
t_0 \\
t_1
\end{bmatrix}
=\frac{1}{2}
\begin{bmatrix}
1&1 \\
1&-1
\end{bmatrix}
\cdot
\begin{bmatrix}
h_0 \\
h_1
\end{bmatrix}
\\
\end{align}
\begin{align} h_0&=(x-v_1)(x-v_4)(x-v_5) & h_1&=(x-v_2)(x-v_3)(x-v_6) \notag \\ &=x^3+ca_2x^2+ca_1x+ca_0 & &=x^3+cb_2x^2+cb_1x+cb_0\\ \notag \\ &\left\{ \begin{array}{l} ca_2=-({v_5}+{v_4}+{v_1})\\ ca_1={v_4} {v_5}+{v_1} {v_5}+{v_1} {v_4}\\ ca_0=-{v_1} {v_4} {v_5}\\ \end{array} \right. & &\left\{ \begin{array}{l} cb_2=-({v_6}+{v_3}+{v_2})\\ cb_1={v_3} {v_6}+{v_2} {v_6}+{v_2} {v_3}\\ cb_0=-{v_2} {v_3} {v_6}\\ \end{array} \right.\\ \end{align}
\(\rho_i(v_1)\) | \(\rho_i(v_4)\) | \(\rho_i(v_5)\) | \(\rho_i(v_2)\) | \(\rho_i(v_3)\) | \(\rho_i(v_6)\) | ||
\(\kappa_1\) | \(\rho_1\) | \(v_1\) | \(v_4\) | \(v_5\) | \(v_2\) | \(v_3\) | \(v_6\) |
\(\rho_4\) | \(v_4\) | \(v_5\) | \(v_1\) | \(v_3\) | \(v_6\) | \(v_2\) | |
\(\rho_5\) | \(v_5\) | \(v_1\) | \(v_4\) | \(v_6\) | \(v_2\) | \(v_3\) | |
\(\kappa_2\) | \(\rho_2\) | \(v_2\) | \(v_6\) | \(v_3\) | \(v_1\) | \(v_5\) | \(v_4\) |
\(\rho_3\) | \(v_3\) | \(v_2\) | \(v_6\) | \(v_4\) | \(v_1\) | \(v_5\) | |
\(\rho_6\) | \(v_6\) | \(v_3\) | \(v_2\) | \(v_5\) | \(v_4\) | \(v_1\) |
\( \ \) | \(\kappa_i(ca_i)\) | \(\kappa_i(cb_j)\) |
---|---|---|
\(\kappa_1\) | \(ca_i\) | \(cb_j\) |
\(\kappa_2\) | \(cb_i\) | \(ca_j\) |
\( \ \) | \(\kappa_i(h_0)\) | \(\kappa_i(h_1)\) |
---|---|---|
\(\kappa_1\) | \(h_0\) | \(h_1\) |
\(\kappa_2\) | \(h_1\) | \(h_0\) |
\( \ \) | \(\kappa_i(h_0+h_1)\) | \(\kappa_i(h_0-h_1)\) |
---|---|---|
\(\kappa_1\) | \(h_0+h_1\) | \(h_0-h_1\) |
\(\kappa_2\) | \(h_1+h_0\) | \(h_1-h_0\) |
\( \ \) | \(\kappa_i(t_0)\) | \(\kappa_i(t_1)\) | \(\kappa_i(t_1^2)\) |
---|---|---|---|
\(\kappa_1\) | \(t_0\) | \(t_1\) | \(t_1^2\) |
\(\kappa_2\) | \(t_0\) | \(-t_1\) | \(t_1^2\) |
\begin{align} &t_0 \ \in \ F_0[x], \quad t_1 \ \notin \ F_0[x] \\ \notag \\ &\kappa_2(t_1^2)=\kappa_2(t_1) \cdot \kappa_2(t_1)=(-t_1)^2=t_1^2 \qquad \therefore \ t_1^2 \ \in \ F_0[x] \\ \end{align}