Techniques of Solving Equations à la Galois


Profile
Name: scruta \(\quad\) Daily life: mowing

Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14

\(\qquad\)


Contact

mailaddress



Copyright © 2023 scruta

Chapter2

    The Essence of Galois Theory Packed Into One

\(\qquad \qquad \qquad f(x)=x^3+3x+1 \qquad Galois \ Group:S_3\)

\( \quad \)

▶ Page    1,   2,   3,   4,   5,   6,   7,   8,   9           ▶ Sample Program

<

\(\quad \)
home \(\quad \)

\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)

[2-8] The Galois group of the equation \(f(x)\) and its composition series

\(\nextSection\)
From the discussion in the previous section, we found that the set of all \(F_0\)-automorphisms \(\{\rho_{1}, \rho_{2},..., \rho_{6}\}\) has the structure of the symmetric group \(S_3\).

Assuming some group theory: the symmetric group \(S_3\) has a composition series as shown in (8.1). In Galois theory, as indicated in (8.1)–(8.2), there are three fields corresponding to the three groups in this composition series.

Moreover, the field extensions \(\{F_1/F_0,\ F_2/F_1\}\) are Galois extensions; their extension degrees are prime and, as shown in (8.3)–(8.4), each is a cyclic extension of degrees 2 and 3, respectively.
The process of enlarging the base field \(F_0\) step by step to \(F_1\) and \(F_2\) constitutes the method of solving the equation using Galois theory.

\begin{align} &Gal(F_0(v)/F_0) =\{\rho_{1}, \rho_{2},..., \rho_{6}\} =S_3 : \ Galois \ group \ of \ F_0(v)/F_0 \notag \\ \notag \\ & \ Composition \ series \ of \ Galois \ group \ S_3 \notag \\ \end{align} \begin{align} &S_3 & &\rhd & &A_3 & &\rhd & &e \\ &\updownarrow & & & &\updownarrow & & & &\updownarrow \notag \\ &F_0 & &\rightarrow & &F_1 & &\rightarrow & &F_2 \ \ ( \cong F_0(v) ) \\ \end{align} \begin{align} & \qquad \qquad \Downarrow \notag \\ \notag \\ & Galois \ extension & & & &Galois \ Group \notag \\ \notag \\ &[1] \quad [ \ F_1:F_0 \ ]=2 & &\rightarrow & &Gal(F_1/F_0) = S_3/A_3 \cong C_2 \\ \notag \\ &[2] \quad [ \ F_2:F_1 \ ]=3 & &\rightarrow & &Gal(F_2/F_1) = A_3/e \cong C_3\\ \end{align}


(Supplement) The elements of the Galois groups that correspond to the above composition series are as follows.

\begin{align} &S_3=\{\rho_{1},\rho_{2},\rho_{3},\rho_{4},\rho_{5},\rho_{6}\}, \quad A_3=\{\rho_{1},\rho_{4},\rho_{5}\}, \quad e=\{\rho_{1}\} \notag \\ \notag \\ &\left\{ \begin{array}{l} S_3/A_3 \cong C_2 \equiv \{\kappa_1,\kappa_2\}, \quad \kappa_1=\{\rho_{1},\rho_{4},\rho_{5}\} ,\quad \kappa_2=\{\rho_{2},\rho_{3},\rho_{6}\}\\ A_3/e \cong C_3=\{\rho_{1},\rho_{4},\rho_{5}\}\\ \end{array} \right. \notag \\ \end{align}

\(\qquad\)(Note) \(\kappa_1,\kappa_2\) denote the elements (cosets) of the quotient group \(S_3/A_3\).

[2-9] Computing \(F_1/F_0\): finding the minimal polynomial \(g_1(x)\) (1)

\(\nextSection\)
Solution procedure
We now begin the standard calculation in Galois theory: enlarging fields while shrinking groups. Concretely, we start from the green part in the left figure (Fig. 2-2).

The light-blue part of (Fig. 2-2) (the computation of \(\omega\)) was already explained in Chapter 1.

In this section we compute the minimal polynomial \(g_1(x)\). The calculation has three stages.

First, we carry out Stage 1 in the boxed display below.


Step 1 LRT (Lagrange Resolvent Transformation)
\begin{align} & h_0=\prod_{\rho_i \in \kappa_1 }\rho_i(x-v)=(x-v_1)(x-v_4)(x-v_5) \\ &h_1=\prod_{\rho_i \in \ \kappa_2}\rho_i(x-v)=(x-v_2)(x-v_3)(x-v_6) \\ \notag \\ & \begin{bmatrix} t_0 \\ t_1 \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} \\ \end{align}


Let us see how \(\{h_0,h_1\}\) transform under the elements \(\{\kappa_1,\kappa_2\}\) of \(Gal(F_1/F_0)\). We first expand \(\{h_0,h_1\}\).

\begin{align} h_0&=(x-v_1)(x-v_4)(x-v_5) & h_1&=(x-v_2)(x-v_3)(x-v_6) \notag \\ &=x^3+ca_2x^2+ca_1x+ca_0 & &=x^3+cb_2x^2+cb_1x+cb_0\\ \notag \\ &\left\{ \begin{array}{l} ca_2=-({v_5}+{v_4}+{v_1})\\ ca_1={v_4} {v_5}+{v_1} {v_5}+{v_1} {v_4}\\ ca_0=-{v_1} {v_4} {v_5}\\ \end{array} \right. & &\left\{ \begin{array}{l} cb_2=-({v_6}+{v_3}+{v_2})\\ cb_1={v_3} {v_6}+{v_2} {v_6}+{v_2} {v_3}\\ cb_0=-{v_2} {v_3} {v_6}\\ \end{array} \right.\\ \end{align}

For the two groups \(\{v_1,v_4,v_5\}\) and \(\{v_2,v_3,v_6\}\) that comprise the expansion coefficients of \(\{h_0,h_1\}\), the transformation results under \([\ \kappa_1=\{\rho_1,\rho_4,\rho_5\},\ \kappa_2=\{\rho_2,\rho_3,\rho_6\}\ ]\) are listed in [Table 2-4].
[Table 2-4] Transformation table of \(\rho_i(v_j)\) grouped by \(\{\kappa_1,\kappa_2\}\)
\(\rho_i(v_1)\)\(\rho_i(v_4)\)\(\rho_i(v_5)\) \(\rho_i(v_2)\)\(\rho_i(v_3)\)\(\rho_i(v_6)\)
\(\kappa_1\) \(\rho_1\)\(v_1\)\(v_4\)\(v_5\)\(v_2\)\(v_3\)\(v_6\)
\(\rho_4\)\(v_4\)\(v_5\)\(v_1\)\(v_3\)\(v_6\)\(v_2\)
\(\rho_5\)\(v_5\)\(v_1\)\(v_4\)\(v_6\)\(v_2\)\(v_3\)
\(\kappa_2\) \(\rho_2\)\(v_2\)\(v_6\)\(v_3\)\(v_1\)\(v_5\)\(v_4\)
\(\rho_3\)\(v_3\)\(v_2\)\(v_6\)\(v_4\)\(v_1\)\(v_5\)
\(\rho_6\)\(v_6\)\(v_3\)\(v_2\)\(v_5\)\(v_4\)\(v_1\)
\(\quad \)


(No further explanation should be necessary.)

[Table 2-4]
\(\quad \Downarrow\)
[Table 2-5]
\(\quad \Downarrow\)
[Table 2-6]
[Table 2-5] Multiplication table for \(\kappa_i(ca_j,cb_j)\)
\( \ \)\(\kappa_i(ca_i)\)\(\kappa_i(cb_j)\)
\(\kappa_1\)\(ca_i\)\(cb_j\)
\(\kappa_2\)\(cb_i\) \(ca_j\)




\( \ \Rightarrow \ \)
[Table 2-6] Multiplication table for \(\kappa_i(h_j)\)
\( \ \)\(\kappa_i(h_0)\)\(\kappa_i(h_1)\)
\(\kappa_1\)\(h_0\)\(h_1\)
\(\kappa_2\)\(h_1\) \(h_0\)

From [Table 2-6] we see that \(\{h_0,h_1\}\) are invariant under the action of \(\kappa_1\), whereas under \(\kappa_2\) they are interchanged. Because \(\{h_0,h_1\}\) have this property, it is easy to infer that the \(\{t_0,t_1\}\) produced by the Lagrange resolvent transformation (9.3) have the properties listed in [Table 2-8] below.
[Table 2-7] \(\kappa_i\) action table
\( \ \)\(\kappa_i(h_0+h_1)\)\(\kappa_i(h_0-h_1)\)
\(\kappa_1\)\(h_0+h_1\)\(h_0-h_1\)
\(\kappa_2\)\(h_1+h_0\)\(h_1-h_0\)




\( \ \Rightarrow \ \)
[Table 2-8] \(\kappa_i\) action table
\( \ \)\(\kappa_i(t_0)\)\(\kappa_i(t_1)\)\(\kappa_i(t_1^2)\)
\(\kappa_1\)\(t_0\)\(t_1\)\(t_1^2\)
\(\kappa_2\)\(t_0\)\(-t_1\)\(t_1^2\)

All of the above followed solely from the mapping behavior of the automorphisms \(\rho_i\) on the \(v_i\). It is interesting how many properties can be read off from the mapping behavior alone, even without explicit computation. This gives a good sense of the strength of automorphisms, which frequently appear in Galois theory. The summary of this section is as follows.

\begin{align} &t_0 \ \in \ F_0[x], \quad t_1 \ \notin \ F_0[x] \\ \notag \\ &\kappa_2(t_1^2)=\kappa_2(t_1) \cdot \kappa_2(t_1)=(-t_1)^2=t_1^2 \qquad \therefore \ t_1^2 \ \in \ F_0[x] \\ \end{align}


\(\quad \)
home \(\quad \)