Techniques of Solving Equations à la Galois


Profile
Name: scruta \(\quad\) Daily life: mowing

Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14

\(\qquad\)


Contact

mailaddress



Copyright © 2023 scruta

Chapter9

    What!?    Is the Galois-Style Method Falling Apart?

\(\qquad \qquad f_1(x)=x^3-2 \qquad f_2(x)=x^5-5x^3+5x+6\)

\( \quad \)

▶ Page    1,   2,   3,   4,   5 

\(\quad \)
home \(\quad \)

\(\nextSection\)
\(\nextSection\)

[9-3] A second failure example     \(f_2(x)=x^5-5x^3+5x+6 \)

In the previous section we used the Trager Algorithm twice.
There we skipped the details; in this section we return to those computations with a quintic, and explain the steps again. The example is a bit involved, but it makes the procedure of the Trager Algorithm clear, so we go through the calculation process. We consider the following equation.

\begin{align} f(x)&=x^5-5x^3+5x+5 =(x-\alpha)(x-\beta)(x \ -\gamma)(x \ -\delta)(x \ -\epsilon) \\ \notag \\ v&=1 \cdot \alpha+2 \cdot \beta+3 \cdot \gamma+4 \cdot \delta+5 \cdot \epsilon \\ \end{align}

\begin{align} &\left\{ \begin{array}{l} f(x)=(x-\alpha)q_1(x)+r_1 \\ q_1(x)=(x-\beta)q_2(x)+r_2 \\ q_2(x)=(x-\gamma)q_3(x)+r_3 \\ q_3(x)=(x-\delta)q_4(x)+r_4 \\ q_4(x)=(x-\epsilon)q_5(x)+r_5 \\ r_5=\alpha+\beta+\gamma+\delta+\epsilon\\ \end{array} \right.\\ \end{align}

\begin{align} &\left\{ \begin{array}{l} &f(\alpha)=0 \ \Rightarrow \ r_1=0 \quad &q_1(\beta)=0 \ \Rightarrow \ r_2=0 \\ &q_2(\gamma)=0 \ \Rightarrow \ r_3=0\quad &q_3(\delta)=0 \ \Rightarrow \ r_4=0 \\ &q_4(\epsilon)=0\ \Rightarrow \ r_5=0 \quad &eq(3.2) \quad \Rightarrow \quad r_6 \equiv v-(\alpha+2\beta+3\gamma+4\delta+5\epsilon)=0\\ \end{array} \right.\\ \end{align}

From (3.4) we treat \(\{ \ r_1=0, \ r_2=0, \ r_3=0, \ r_4=0, \ r_5=0 , \ r_6=0 \ \}\) as a simultaneous system in the unknowns \(\{ \ \alpha, \ \beta, \ \gamma, \ \delta, \ \epsilon, \ v \ \}\) and aim to solve it. In such a situation, we simplify by reducing variables using the resultant. In the end we can simplify (?!) down to a univariate polynomial in \(v\) of degree \(120\).
Moreover, using Maxima’s factor command, \(V(x)\) factors over the field of rational numbers \(Q\) into six polynomials of degree \(20\). We take the first factor \(V_1(x)\) as a candidate for the minimal polynomial of \(v\).

\begin{align} V(v) &= v^{120}-1500v^{118}+1085250v^{116}-504625000v^{114}+....... \\ \end{align}

\begin{align} V(v) &=\displaystyle \prod_{i=1}^{6}V_{i}(v) \\ \end{align}

\begin{align} V_1(v) &= v^{20}-250v^{18}+22025v^{16}-......+12500000v^2+3200000 \\ \end{align}

Typically \(V_1\) is irreducible over \(Q\), so we would proceed using it as the minimal polynomial of \(v\). However, as the computation continues, just as in the previous section, we fail at the final stage when attempting to compute a reciprocal, and the calculation stalls.
So we move to the field \(Q(\zeta)\) obtained by adjoining a primitive 5th root of unity \(\zeta\) and check whether “\(V_1(x)\) is irreducible (i.e., whether it factors)”. Writing the minimal polynomial of \(\zeta\) as \([ \ Z=\zeta^4+\zeta^3+\zeta^2+\zeta+1 \ ]\), the computer algebra system Maxima has a command \(factor(V_1,Z)\) that factors \(V_1\) over the number field generated by \(Z\). Nevertheless, we prefer to carry out the computation ourselves using the Trager Algorithm.

[9-4] Factor \(V_1(x)\) over the number field \(Q(\zeta)\) by hand

\(\nextSection\)
To factor \(V_1(x)\), we change variables as in (4.1), \([ \ x \ \rightarrow \ x+s \cdot \zeta \ ]\).
In this run of the Trager Algorithm we take \(s=1\). We then compute the resultant of \(V_1(x+s \cdot \zeta)\) and \(Z\).

\begin{align} &V_1(x+s \cdot \zeta) =x^{20}+ 20\zeta x^{19}+(190\zeta^{2}-250)x^{18}+.... +406559376 \\ \notag \\ &Resultant(V_1(x+s \cdot \zeta),Z,\zeta) = R_1(x) \cdot R_2(x)\\ \notag \\ &\left\{ \begin{array}{l} R_1(x)={{x}^{40}}-10 {{x}^{39}}-445 {{x}^{38}}+3980 {{x}^{37}}+....+1591615199615670401 \\ R_2(x)={{x}^{40}}-10 {{x}^{39}}-445 {{x}^{38}}+5080 {{x}^{37}}+...+81117808067017201 \\ \end{array} \right. \\ \end{align}

The resultant factors into two degree-40 polynomials \( R_1(x)\) and \(R_2(x)\). Running the Euclidean algorithm (4.4) on each of these with \(V_1(x+s \cdot \zeta) \) yields the greatest common divisors shown in (4.5).

\begin{align} &r_{i-1}=q_{i} \cdot r_{i}+c_{i+1} \cdot r_{i+1} \quad [ \ i=1,2,3,...,11 \ ] \\ \end{align}

\begin{align} &\left\{ \begin{array}{l} r_0 \equiv R_1(x), \quad r_1 \equiv V_1(x+s \cdot \zeta) \quad \rightarrow \quad r_{12}=0 \quad \therefore \ r_{11}=Y_1 \\ r_0 \equiv R_2(x), \quad r_1 \equiv V_1(x+s \cdot \zeta) \quad \rightarrow \quad r_{12}=0 \quad \therefore \ r_{11}=Y_2 \\ \end{array} \right. \\ \notag \\ &\qquad \left\{ \begin{array}{l} GCD(R_1(x),V_1(x+s \cdot \zeta) )=Y_1(x)=x^{10}+10\zeta x^9+...-4011535\zeta+217696416\\ GCD(R_2(x),V_1(x+s \cdot \zeta) )=Y_2(x)=x^{10}+10\zeta x^9+...+4795560\zeta+83166086\\ \end{array} \right. \\ \end{align}

Replacing the variable in \(\{Y_1(x),Y_2(x)\}\) by \([ \ x \ \rightarrow \ x-s \cdot \zeta \ ]\) gives the factorization (4.7) of \(V_1(x)\). We take one of the factors, \(Y_1(x-s \cdot \zeta)\), as the minimal polynomial \(g_0(x)\) of \(v\).

\begin{align} \therefore \ V_1(x)&=Y_1(x-s \cdot \zeta) \cdot Y_2(x-s\cdot \zeta) \\ \notag \\ g_0(x) &\equiv Y_1(x-s \cdot \zeta) \notag \\ &=x^{10}-(110\zeta^3+110\zeta^2+180)x^8+(9625\zeta^3+9625\zeta^2+15575)x^6 \notag \\ &-(341000\zeta^3+341000\zeta^2+551750)x^4+(4228125\zeta^3+4228125\zeta^2+6841250)x^2 \notag \\ &+134208800\zeta^3+134208800\zeta^2+217154400 \\ \end{align}


[9-5] Factor \(f(x)\) over the number field \(Q(\zeta,v)\) by hand

With the minimal polynomial \(g_0(x)\) determined, we now factor the equation \(f(x)\) inside the number field generated by this polynomial. Since the field generated by \(g_0(x)\) is the minimal splitting field for \(v\), \(f(x)\) should factor all the way down to linear polynomials in \(x\).
To factor \(f(x)\), we change variables as in (4.1), \([ \ x \ \rightarrow \ x+s \cdot \zeta \ ]\).
In this application of the Trager Algorithm we again take \(s=1\). We then compute the resultant of \(f(x+s \cdot v)\) and \(g_0(v)\).
\(\nextSection\)

\begin{align} &f(x+s \cdot v)=(x+v)^5-5(x+v)^3+5(x+v)+6 \\ \notag \\ \end{align} \begin{align} &Resultant(f(x+s \cdot v),g_0(v),v)=R_1(x) \cdot R_2(x) \cdot R_3(x) \cdot R_4(x) \cdot R_5(x) \\ \notag \\ &\left\{ \begin{array}{l} R_1(x)=x^{10}-(150\zeta^3+150\zeta^2+260)x^8+....+787597200\zeta^2+1274359536 \\ \qquad ..... \\ R_5(x)=x^{10}-(70\zeta^3+70\zeta^2+120)x^8+....+16888960\zeta^2+27326916 \\ \end{array} \right. \\ \end{align}

The resultant factors into five degree-10 polynomials \( \{ \ R_1(x),...,R_5(x) \ \}\). Running the Euclidean algorithm (5.4) between each of these and \(f(x+s \cdot v) \) yields the greatest common divisors in (5.5).

\begin{align} &\left\{ \begin{array}{l} r_{i-1}=q_{i} \cdot r_{i}+c_{i+1} \cdot r_{i+1} \quad [ \ i=1,...,5 \ ] \\ \qquad r_0 \equiv R_k(x), \quad r_1 \equiv f(x+s \cdot v) \quad \rightarrow \quad r_{6}=0 \quad \therefore \ r_{5}=Y_k \quad [ \ k=1,..,5 \ ] \\ \end{array} \right. \\ \notag \\ &\left\{ \begin{array}{l} GCD(R_1(x),f(x+s \cdot v))=Y_1(x)=x-\frac{2207 {{v}^{6}} {{\zeta }^{3}}}{300}+\frac{623 {{v}^{4}} {{\zeta }^{3}}}{60}+... +\frac{143 {{v}^{2}}}{60}+\frac{3 v}{2} \\ \qquad ......\\ GCD(R_5(x),f(x+s \cdot v))=Y_5(x)=x-\frac{2207 {{v}^{6}} {{\zeta }^{3}}}{300}+\frac{623 {{v}^{4}} {{\zeta }^{3}}}{60}+... +\frac{143 {{v}^{2}}}{60}+\frac{v}{2} \\ \end{array} \right. \\ \end{align}

Replacing the variable in \(\{Y_1(x),...,Y_5(x)\}\) by \([ \ x \ \rightarrow \ x-s \cdot v \ ]\), we obtain (5.6): \(f(x)\) factors into five linear polynomials in \(x\). Hence the polynomial expressions of the roots of \(f(x)\) in terms of \(v\) are given in (5.7).

\begin{align} &\therefore \ f(x)=Y_1(x-s \cdot v) \cdot Y_2(x-s \cdot v) \cdot Y_3(x-s \cdot v) \cdot Y_4(x-s \cdot v) \cdot Y_5(x-s \cdot v) \\ \notag \\ &Y_i(x-s \cdot v)=0 \qquad [\ i=1,...,5 \ ] \notag \\ &\qquad \Downarrow \notag \\ &\left\{ \begin{array}{l} x_1=\frac{1}{300}\bigl((2207v^6-3115v^4+1170v^2+150v-100)ζ^3+...-715v^2-150v \bigr) \\ x_2=-\frac{1}{300}\bigl((843v^6-1190v^4+455v^2+300v-100)ζ^3+...-260v^2-150v-100 \bigr) \\ x_3=-\frac{1}{150}\bigl((1364v^6-1925v^4+715v^2)ζ^3+... -455v^2+100 \bigr) \\ x_4=-\frac{1}{300}\bigl( (843v^6-1190v^4+455v^2-300v-100)ζ^3+...-260v^2+150v-100 \bigr) \\ x_5=\frac{1}{300}\bigl( (2207v^6-3115v^4+1170v^2-150v-100)ζ^3+...-715v^2+150v \bigr) \\ \end{array} \right. \\ \end{align}


The set \(\{ \ x_1,...,x_5 \ \}\) is some permutation of \(\{ \ \alpha, \ \beta, \ \gamma, \ \delta, \ \epsilon \}\), but we do not yet know the one-to-one correspondence. In the next section we compute that correspondence.

\(\quad \)
home \(\quad \)