Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
Chapter 1
Mastering Galois-style Equation Solving at Lightning Speed
\(\qquad \qquad \qquad f(x)=x^2+x+1 \qquad Galois \ Group:C_2\)
\( \quad \)
▶ Page 1, 2 ▶ Sample Program
\begin{align} & \rho_{1}(v) \equiv v_1= v & &\rho_{2}(v) \equiv v_2= -v-3 \\ \end{align}
\begin{align} (1) \quad &\rho_2 \circ \rho_2=\rho_1 \\ &\rho_2 \circ \rho_2(v)=\rho_2 (\rho_2(v))=\rho_2 (v_2)= \rho_2 ( -v-3 )=-(-v-3)-3=v=v_1=\rho_1(v) \notag \\ \notag \\ (2) \quad &\rho_2(v_2)=v_1 \\ &\rho_2 (v_2)= \rho_2 ( -v-3 )=-\rho_2 (v)-\rho_2 (3 )=-(-v-3)-3=v=v_1 \notag \\ \notag \\ (3)\quad &\rho_2 (\beta)=\alpha \\ &\rho_2(\beta)=\rho_2(v+1)=\rho_2(v)+\rho_2(1)=-v-3+1=-v-2=\alpha \notag \\ \end{align}
\( \ \) | \(\rho_1\) | \(\rho_2\) |
---|---|---|
\(\rho_1\) | \(\rho_1\) | \(\rho_2\) |
\(\rho_2\) | \(\rho_2\) | \(\rho_1\) |
\( \ \) | \(\rho_i(v_1)\) | \(\rho_i(v_2)\) |
---|---|---|
\(\rho_1\) | \(v_1\) | \(v_2\) |
\(\rho_2\) | \(v_2\) | \(v_1\) |
\( \ \) | \(\rho_i(\alpha)\) | \(\rho_i(\beta)\) |
---|---|---|
\(\rho_1\) | \(\alpha\) | \(\beta\) |
\(\rho_2\) | \(\beta\) | \(\alpha\) |
\begin{align} \biggl[ \ C_2 \ \rhd \ e \ \biggr] \ : \ Composition \ series \ of \ Galois \ group \ C_2 \notag \\ \end{align}
Step1 LRT (Lagrange Resolvent Transformation)
\begin{align}
&\left\{
\begin{array}{l}
h_0 \equiv \rho_1(x-v)= x-v_1 \\
h_1 \equiv \rho_2(x-v)= x-v_2
\end{array}
\right.
\qquad \qquad
h_0, \ h_1 \ \in \ Q(v)[x]\\
\notag \\
&\begin{bmatrix}
t_0 \\
t_1
\end{bmatrix}
\equiv \frac{1}{2}
\begin{bmatrix}
1&1 \\
1&-1
\end{bmatrix}
\cdot
\begin{bmatrix}
h_0 \\
h_1
\end{bmatrix}
=
\begin{bmatrix}
\frac{(h_0+h_1)}{2} \\
\frac{(h_0-h_1)}{2}
\end{bmatrix}
=
\begin{bmatrix}
x+\frac{3}{2} \\
-v-\frac{3}{2}
\end{bmatrix}
\end{align}
\begin{align} \rho_1(t_0)&=t_0, \quad \rho_2(t_0)=t_0 & &\therefore t_0 \ \in \ Q[x] \\ \rho_1(t_1)&=t_1, \quad \rho_2(t_1)=-t_1 & &\therefore t_1 \ \notin \ Q[x] \\ \end{align}
\begin{align} t_1^2&=\bigl(-v-\frac{3}{2} \bigr)^2=v^2+3v+\frac{9}{4}=-\frac{3}{4} \equiv A_0 \in Q \quad (mod \ g_0(v)) \notag \\ \therefore t_1^2&=A_0 \\ \end{align}
\begin{align} B_0(x)&=x^2-A_0 =0 \quad \ \therefore \ t_1= \sqrt{A_0}=\frac{\sqrt{-3}}{2} \equiv a_0\\ \end{align}
Step2 The binomial equation \(B_0(x)\) and the new adjoined element \(a_0\)
\begin{align}
&\left\{
\begin{array}{l}
t_0 \ \in \ Q[x] \\
t_1 \ \in \ Q(v)
\end{array}
\right.
\quad \Longrightarrow \quad
\left\{
\begin{array}{l}
B_0(x)=x^2-A_0=0 \qquad t_1^2=A_0=-\frac{3}{4} \in Q \\
a_0=\sqrt{A_0} \ \in \ Q(a_0) \equiv Q_1 \\
\end{array}
\right. \notag \\
\end{align}
\begin{align} t_1 \quad &\Rightarrow \quad \tilde{t_1} \equiv a_0 \quad \in Q(a_0) \equiv Q_1 \\ \end{align}
Step3 ILRT (Inverse Lagrange Resolvent Transformation)
\begin{align}
&\begin{bmatrix}
\tilde{h_0} \\
\tilde{h_1 }
\end{bmatrix}
=
\begin{bmatrix}
1&1 \\
1&-1
\end{bmatrix}
\cdot
\begin{bmatrix}
t_0 \\
\tilde{t_1}
\end{bmatrix}
=
\begin{bmatrix}
x+\frac{3}{2}+a_0\\
x+\frac{3}{2}-a_0
\end{bmatrix}
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
g_0(x)=\tilde{h_0} \cdot \tilde{h_1} \ \in \ Q[x] \\
g_1(x) \equiv \tilde{h_0} \ \in \ Q_1[x]
\end{array}
\right. \\
\end{align}
\begin{align} &g_1(x)=x+\frac{3}{2}+a_0 \quad \Rightarrow \quad v=-\frac{3}{2}-a_0 \\ \end{align}
\begin{align} a_0=\frac{\sqrt{-3}}{2} \quad \rightarrow \quad \alpha=-v-2=-\frac{1}{2}+a_0, \quad \beta=v+1=-\frac{1}{2}-a_0 \\ \end{align}