Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
Chapter6
Solving Cyclic Equations
\(\qquad \qquad \qquad \Phi_{5}(x)=x^4+x^3+x^2+x+1 \qquad Galois \ Group:C_4\)
\( \quad \)
▶ Page 1, 2, 3 ▶ Sample Program
\begin{align} &x^{5}-1=(x-1) \times \Phi_{5}(x) \notag \\ \notag \\ &\Phi_{5}(x) =( x^4+x^3+x^2+x+1) \\ \notag \\ &Minimal \ Polynomial \ of \ v : \ g_0(x) \equiv \Phi_{5}(x) \quad \rightarrow \quad g_0(v)=0\\ \notag \\ &factor(\Phi_{5}(x),g_0(v))=(x-v)(x-v^2)(x-v^3)(x+v^3+v^2+v+1) \\ \notag \\ \therefore \ f(x)&=(x-v)(x-v^2)(x-v^3)(x+v^3+v^2+v+1) \\ &=(x-v_1)(x-v_2)(x-v_3)(x-v_4) \\ \notag \\ &\Downarrow \notag \\ \end{align} \begin{align} &\left\{ \begin{array}{l} \rho_{1}(v) \equiv v_{1}=v \qquad \rho_{2}(v) \equiv v_{2}=v^{2} \\ \rho_{3}(v) \equiv v_{3}=v^{3} \qquad \rho_{4}(v) \equiv v_{4}=-(v^3+v^2+v+1) \quad mod( \ g_0(v) \ ) \\ \end{array} \right. \\ \end{align}
\begin{align} &v^5=v \cdot v^4=-v(v^3+v^2+v+1)=-(v^4+v^3+v^2+v)=-(-1)=1 \quad \therefore \ v^5=1 \\ &\qquad \qquad \Downarrow \notag \\ \end{align} \begin{align} &\rho_2 \circ \rho_2(v)=\rho_2(v^2)=\rho_2(v)\cdot \rho_2(v)=v^2 \cdot v^2=v^4=v_4=\rho_4(v) \quad \rightarrow \ (\rho_2)^2=\rho_4 \notag \\ &\rho_2 \circ \rho_2\circ \rho_2(v)=(v^2)^4=v^3=v_3=\rho_3(v) \quad \rightarrow \ (\rho_2)^3=\rho_3 \\ &\rho_2 \circ \rho_2 \circ \rho_2\circ \rho_2(v)=(v^2)^3=v^6=v=v_1=\rho_1(v) \quad \rightarrow \ (\rho_2 )^4=\rho_1 \notag \\ \end{align}
\( i \backslash j \) | \(\rho_1\) | \(\rho_2\) | \(\rho_4\) | \(\rho_3\) |
---|---|---|---|---|
\(\rho_1\) | \(\rho_1\) | \(\rho_2\) | \(\rho_4\) | \(\rho_3\) |
\(\rho_2\) | \(\rho_2\) | \(\rho_4\) | \(\rho_3\) | \(\rho_1\) |
\(\rho_4\) | \(\rho_4\) | \(\rho_3\) | \(\rho_1\) | \(\rho_2\) |
\(\rho_3\) | \(\rho_3\) | \(\rho_1\) | \(\rho_2\) | \(\rho_4\) |
\begin{align} &Gal(Q(v)/Q)=C_4 =\{\rho_{1}, \rho_{2},\rho_{3}, \rho_{4}\} \notag \\ \notag \\ &\qquad C_2=\{\rho_{1}, \rho_{4}\} \qquad e=\{\rho_{1}\} \notag \\ \notag \\ &Composition \ series \ of \ Galois \ group \ C_4 \notag \\ & \quad [ \ C_4 \ \rhd \ C_2 \ \rhd \ e \ ] \\ &\qquad \qquad \Downarrow \notag \\ &Cyclic \ extensions \notag \\ &\quad [ \ C_4/C_2 \ \rhd \ e \ ] \rightarrow [ \ C_2/e \ \rhd \ e \ ] \\ \end{align}
\begin{align} h_0&=\prod_{\sigma_i \in \ C_2}\sigma_i(x-v)=(x-v_1)(x-v_4 )=x^2-(v^3+v^2)x+1 \\ h_1&=\prod_{\sigma_i \in \ (C_4-C_2)}\sigma_i(x-v)=(x-v_2)(x-v_3)=x^2-(v^3+v^2)x+1 \\ \notag \\ \end{align} \begin{align} \begin{bmatrix} t_0 \\ t_1 \\ \end{bmatrix} &=\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1\\ \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} = \begin{bmatrix} {{x}^{2}}+\frac{x}{2}+1\\ (v^3+v^2+\frac{1}{2})x \\ \end{bmatrix}\\ \end{align}
\begin{align} &t_1=cd_m \cdot q_1(x) \ \in Q(v)[x] \notag\\ &cd_m=(v^3+v^2+\tfrac{1}{2}) \ \in Q(v) \qquad q_1(x)=x \ \in Q[x]\\ \end{align}
\begin{align} \bbox[#FFFF00]{ cd_m^2 } &=(v^3+v^2+\tfrac{1}{2})^2=v^6+2v^5+v^4+v^3+v^2+\tfrac{1}{4}= \tfrac{5}{4} \bbox[#FFFF00]{ \equiv A_1 } \ \in Q \\ \end{align}
[step2] The quadratic equation \(B_1(x)=0\) and generating the new adjoint element \(a_1\)
\begin{align}
&\left\{
\begin{array}{l}
t_1=cd_m \cdot q_1(x) \ \in Q(v)[x]\\
\\
cd_m=(v^3+v^2+\tfrac{1}{2}) \ \in Q(v) \\
q_1(x)=x \ \in Q[x]\\
\end{array}
\right.
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
B_1(x)=x^2-A_1=0 \\
a_1=\sqrt {A_1} \ \in Q(a_1) \equiv Q_1\\
\\
\tilde{t_1}=a_1 \cdot q_1(x) \ \in Q_1[x] \\
\end{array}
\right. \\
\end{align}