Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
Chapter6
Solving Cyclic Equations
\(\qquad \qquad \qquad \Phi_{5}(x)=x^4+x^3+x^2+x+1 \qquad Galois \ Group:C_4\)
\( \quad \)
▶ Page 1, 2, 3 ▶ Sample Program
[step3] ILRT (Inverse Lagrange Resolvent Transformation)
\begin{align}
&\begin{bmatrix}
\tilde{h_0} \\
\tilde{h_1 }
\end{bmatrix}
=
\begin{bmatrix}
1&1 \\
1&-1
\end{bmatrix}
\cdot
\begin{bmatrix}
t_0 \\
\tilde{t_1}
\end{bmatrix}
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
g_0(x)=\tilde{h_0} \cdot \tilde{h_1} \\
g_1(x) \equiv \tilde{h_0} \ \in \ Q_1[x]
\end{array}
\right. \\
\end{align}
\begin{align} \tilde{h_0}&=t_0+ \tilde{t_1}=x^2+(a_1+\tfrac{1}{2})x+1 \equiv g_1(x) \quad \in Q_1[x] \\ \end{align}
[step1] LRT (Lagrange Resolvent Transformation) \begin{align} &\left\{ \begin{array}{l} h_0=(x-v_1) =x-v \\ h_1=(x-v_4) =x+v^3+v^2+v+1=x+v+a_1+\tfrac{1}{2} \\ \end{array} \right. \\ \notag \\ &\begin{bmatrix} t_0 \\ t_1 \\ \end{bmatrix} =\tfrac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1\\ \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} = \begin{bmatrix} x+\tfrac{a_1}{2}+\tfrac{1}{4}\\ -v-\tfrac{a_1}{2}-\tfrac{1}{4}\\ \end{bmatrix} \\ \end{align}
\begin{align} t_1^2&=v^2+\bigl(a_1+\tfrac{1}{2}\bigr)v+\tfrac{a_1^2}{4}+\tfrac{a_1}{4}+\tfrac{1}{16}=\tfrac{2a_1-5}{8} \equiv A_2 \in Q_1\\ &\Downarrow \notag \\ B_2(x)&=x^2-A_2 \quad a_2=\sqrt{A_2} \ \in Q_1(a_2) \equiv Q_2 \qquad \tilde{t_1}\equiv a_2 \in Q_2 \\ \end{align}
[step2] The quadratic equation \(B_2(x)=0\) and generating the new adjoint element \(a_2\)
\begin{align}
\left\{
\begin{array}{l}
t_1=-v-\tfrac{a_1}{2}-\tfrac{1}{4} \ \in Q_1(v)\\
t_1^2=\tfrac{2a_1-5}{8} \equiv A_2 \in Q_1\\
\end{array}
\right.
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
\tilde{t_1}=a_2 \ \in Q_2\\
B_2(x)=x^2-A_2=0 \\
a_2=\sqrt {A_2} \ \in Q_1(a_2) \equiv Q_2\\
\end{array}
\right. \notag \\
\end{align}
[step3] ILRT (Inverse Lagrange Resolvent Transformation)
\begin{align}
&\begin{bmatrix}
\tilde{h_0} \\
\tilde{h_1 }
\end{bmatrix}
=
\begin{bmatrix}
1&1 \\
1&-1
\end{bmatrix}
\cdot
\begin{bmatrix}
t_0 \\
\tilde{t_1}
\end{bmatrix}
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
g_0(x)=\tilde{h_0} \cdot \tilde{h_1} \\
g_2(x) \equiv \tilde{h_0} \ \in \ Q_2[x]
\end{array}
\right. \\
\end{align}
\begin{align} \tilde{h_0}&=t_0+ \tilde{t_1}=x+a_2+\tfrac{a_1}{2}+\tfrac{1}{4} \equiv g_2(x) \quad \in Q_2[x] \\ \therefore \ v&=-a_2-\tfrac{a_1}{2}-\tfrac{1}{4} \\ \end{align}
\begin{align} v_1&=-a_2-\tfrac{a_1}{2}-\tfrac{1}{4} & v_2&=a_1 a_2+\tfrac{a_2}{2}+\tfrac{a_1}{2}-\tfrac{1}{4} \notag \\ v_3&=-a_1 a_2-\tfrac{a_2}{2}+\tfrac{a_1}{2}-\tfrac{1}{4} & v_4&=a_2-\tfrac{a_1}{2}-\tfrac{1}{4} \notag \\ \end{align}