Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} &f(x)=x^5+x^4+2x^3+4x^2+x+1 \\ &\quad \{\alpha,\beta,\gamma,\delta,\epsilon\}: \ roots \ of \ f(x) \notag \\ \end{align}
\begin{align} v=1 \cdot \alpha+2 \cdot \beta+3 \cdot \gamma+4 \cdot \delta+5 \cdot \epsilon \\ \end{align}
\begin{align} f(x)&=x^5+x^4+2x^3+4x^2+x+1 \notag \\ &=(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)(x-\epsilon) \\ \notag \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} f(x)=(x-\alpha)q_1(x)+r_1 \\ q_1(x)=x^4+(\alpha+1)x^3+(\alpha^2+\alpha+2)x^2+(\alpha^3+\alpha^2+2\alpha+4)x \\ \qquad +\alpha^4+\alpha^3+2\alpha^2+4\alpha+1 \\ r_1=\alpha^5+\alpha^4+2\alpha^3+4\alpha^2+\alpha+1 \\ \end{array} \right.\\ \notag \\ &\left\{ \begin{array}{l} q_1(x)=(x-\beta)q_2(x)+r_2 \\ q_2(x)=x^3+(\beta+\alpha+1)x^2+(\beta^2+(\alpha+1)\beta+\alpha^2+\alpha+2)x+\beta^3+(\alpha+1)\beta^2 \\ \qquad +(\alpha^2+\alpha+2)\beta+\alpha^3+\alpha^2+2\alpha+4 \\ r_2=\beta^4+(\alpha+1)\beta^3+(\alpha^2+\alpha+2)\beta^2+(\alpha^3+\alpha^2+2\alpha+4)\beta \\ \qquad +\alpha^4+\alpha^3+2\alpha^2+4\alpha+1\\ \end{array} \right.\\ \notag \\ &\left\{ \begin{array}{l} q_2(x)=(x-\gamma)q_3(x)+r_3 \\ q_3(x)=x^2+(\gamma+\beta+\alpha+1)x+\gamma^2+(\beta+\alpha+1)\gamma+\beta^2+(\alpha+1)\beta \\ \qquad +\alpha^2+\alpha+2 \\ r_3=\gamma^3+(\beta+\alpha+1)\gamma^2+(\beta^2+(\alpha+1)\beta+\alpha^2+\alpha+2)\gamma \\ \qquad +\beta^3+(\alpha+1)\beta^2 \\ \qquad +(\alpha^2+\alpha+2)\beta+\alpha^3+\alpha^2+2\alpha+4\\ \end{array} \right.\\ \notag \\ &\left\{ \begin{array}{l} q_3(x)=(x-\delta)q_4(x)+r_4 \\ q_4(x)=x+\delta+\gamma+\beta+\alpha+1 \\ r_4=\delta^2+(\gamma+\beta+\alpha+1)\delta+\gamma^2+(\beta+\alpha+1)\gamma+\beta^2+(\alpha+1)\beta+\alpha^2+\alpha+2 \\ \end{array} \right.\\ \notag \\ &\left\{ \begin{array}{l} q_4(x)=(x-\epsilon)q_5(x)+r_5 \\ q_5(x)=1 \\ r_5=\alpha+\beta+\gamma+\delta+\epsilon +1\\ \end{array} \right.\\ \notag \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} &f(\alpha)=0 \ \Rightarrow \ r_1=0 \quad &q_1(\beta)=0 \ \Rightarrow \ r_2=0 \\ &q_2(\gamma)=0 \ \Rightarrow \ r_3=0\quad &q_3(\delta)=0 \ \Rightarrow \ r_4=0 \\ &q_4(\epsilon)=0\ \Rightarrow \ r_5=0 \quad &eq(1.2) \quad \Rightarrow \quad r_6=v-(\alpha+2\beta+3\gamma+4\delta+5\epsilon)=0\\ \end{array} \right.\\ \end{align}
\begin{align} &s_1:Res(r_6,r_5,\epsilon); \quad s_1=-\delta -2 \gamma -3 \beta -4 \alpha -v =0 \notag \\ & \qquad \qquad \Downarrow \notag \\ &s_2:Res(s_1,r_4,\delta); \quad s_2=v^2+(3\gamma+5\beta+7\alpha+9)v+....+22 =0\notag \\ & \qquad \qquad \Downarrow \notag \\ &s_3:Res(s_2,r_3,\gamma); \quad s_3=v^6+(12\beta+18\alpha+24)v^5+...+27620\alpha+7388=0\notag \\ & \qquad \qquad \Downarrow \notag \\ &s_4:Res(s_3,r_2,\beta); \quad s_4=v^{24}+(60\alpha+84)v^{23}+ .....+1177129867156681=0\notag \\ & \qquad \qquad \Downarrow \notag \\ &s_5:Res(s_4,r_1,\alpha); \quad s_5=v^{120}+360v^{119}+64740v^{118}+....=0 \\ \notag \\ &V(v) \equiv s_5=v^{120}+360v^{119}+64740v^{118}+....=0 \\ \end{align}
\begin{align} V(v) &= v^{120}+360v^{119}+64740v^{118}+....+31146731373284877082690427466971286244056290471141012169870457904759580625\notag \\ \end{align}
\begin{align} V(v) &=\displaystyle \prod_{i=1}^{6}V_{i}(v) \\ \end{align}
\begin{align} V_{1}&={{v}^{20}}+60 {{v}^{19}}+1790 {{v}^{18}}+35100 {{v}^{17}}+505261 {{v}^{16}}+5652840 {{v}^{15}}+50799180 {{v}^{14}}+373971600 {{v}^{13}} \notag \\ &+2281089966 {{v}^{12}}+11590327440 {{v}^{11}}+49084357780 {{v}^{10}}+172620188400 {{v}^{9}}+500267581306 {{v}^{8}} \notag \\ &+1181164237800 {{v}^{7}}+2242276888380{{v}^{6}}+3401909638560 {{v}^{5}}+4254933143241 {{v}^{4}} \notag \\ &+4933817387460 {{v}^{3}}+6084439227750 {{v}^{2}}+7164705190500 v+5919446204113 \\ \notag \\ V_{2}&={{v}^{20}}+60 {{v}^{19}}+1790 {{v}^{18}}+35100 {{v}^{17}}+505261 {{v}^{16}}+5655960 {{v}^{15}}+50923980 {{v}^{14}}+376545600 {{v}^{13}} \notag \\ &+2317001166 {{v}^{12}}+11964256320 {{v}^{11}}+52107272740 {{v}^{10}}+191853693600 {{v}^{9}}+596962688906 {{v}^{8}} \notag \\ &+1566271269720 {{v}^{7}}+3458738963260 {{v}^{6}}+6423623108400 {{v}^{5}}+9958500810441 {{v}^{4}} \notag \\ &+12461335397940 {{v}^{3}}+11642922808790 {{v}^{2}}+7043489742900 v+2039290237153 \\ \notag \\ V_{3}&={{v}^{20}}+60 {{v}^{19}}+1790 {{v}^{18}}+35100 {{v}^{17}}+505261 {{v}^{16}}+5657520 {{v}^{15}}+51001980 {{v}^{14}}+378300600 {{v}^{13}} \notag \\ &+2341243566 {{v}^{12}}+12196523160 {{v}^{11}}+53761666780 {{v}^{10}}+201106997400 {{v}^{9}}+639709411106 {{v}^{8}} \notag \\ &+1735342823280 {{v}^{7}}+4035147522220 {{v}^{6}}+8090223429240 {{v}^{5}}+13945832028441 {{v}^{4}} \notag \\ &+20035467005580 {{v}^{3}}+22125472711550 {{v}^{2}}+16079157042780 v+6837132314233 \\ \notag \\ V_{4}&={{v}^{20}}+60 {{v}^{19}}+1790 {{v}^{18}}+35100 {{v}^{17}}+505261 {{v}^{16}}+5657520 {{v}^{15}}+51033180 {{v}^{14}}+379611000 {{v}^{13}} \notag \\ &+2367283086 {{v}^{12}}+12520678680 {{v}^{11}}+56578689820 {{v}^{10}}+219122002200 {{v}^{9}}+726542093666 {{v}^{8}} \notag \\ &+2051322345840 {{v}^{7}}+4880224987660 {{v}^{6}}+9607234534200 {{v}^{5}}+15166159082361 {{v}^{4}} \notag \\ &+ 18160354917900 {{v}^{3}}+14980013767550 {{v}^{2}}+7296354097500 v+1761063045625 \\ \notag \\ V_{5}&={{v}^{20}}+60 {{v}^{19}}+1790 {{v}^{18}}+35100 {{v}^{17}}+505261 {{v}^{16}}+5659080 {{v}^{15}}+51064380 {{v}^{14}}+379400400 {{v}^{13}} \notag \\ &+2351679966 {{v}^{12}}+12238407600 {{v}^{11}}+53492805460 {{v}^{10}}+195251014800 {{v}^{9}}+587807064506 {{v}^{8}} \notag \\ &+1431313551240 {{v}^{7}}+2742285017260 {{v}^{6}}+3974293793760 {{v}^{5}}+4088970374841 {{v}^{4}} \notag \\ &+2626911907620 {{v}^{3}}+675718360070 {{v}^{2}}-213666065340 v+15823731313 \\ \notag \\ V_{6}&={{v}^{20}}+60 {{v}^{19}}+1790 {{v}^{18}}+35100 {{v}^{17}}+505261 {{v}^{16}}+5662200 {{v}^{15}}+51220380 {{v}^{14}}+383284800 {{v}^{13}} \notag \\ &+2414329566 {{v}^{12}}+12961651680{{v}^{11}}+59789211940 {{v}^{10}}+237890884800 {{v}^{9}}+816378602506 {{v}^{8}} \notag \\ &+2407592691960 {{v}^{7}}+6059842042380 {{v}^{6}}+12880967649840 {{v}^{5}}+22758667394841 {{v}^{4}} \notag \\ &+32586900570900 {{v}^{3}}+36272321795190 {{v}^{2}}+28893115997460 v+13542366738433 \\ \end{align}