Techniques of Solving Equations à la Galois


Profile
Name: scruta \(\quad\) Daily life: mowing

Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14

\(\qquad\)


Contact

mailaddress



Copyright © 2023 scruta

Chapter8

   A Treasure Trove of Group Theory Problems: Frobenius Groups

\( \qquad \qquad \qquad f(x)=x^5+x^4+2x^3+4x^2+x+1 \qquad Galois \ Group: \ F_{20}\)

\( \quad \)

▶ Page    1,   2,   3,   4,   5,   6,   7,   8,   9,   10           ▶ Sample Program

\(\quad \)
home \(\quad \)

\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)

[8-6] Cyclic Extension \(F_1/F_0\): Computing the Minimal Polynomial \(g_1(x)\) (continued)

\(\nextSection\)
We now arrive at the final stage of the computation.

[Step3] ILRT (Inverse Lagrange resolvent transformation)
\begin{align} &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1 } \end{bmatrix} = \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \end{bmatrix} \quad \Rightarrow \quad \left\{ \begin{array}{l} g_0(x)=\tilde{h_0} \cdot \tilde{h_1} \\ g_1(x) \equiv \tilde{h_0} \ \in \ F_1[x] \end{array} \right. \\ \end{align}



Substituting \(t_0\) from (5.5) and \(\tilde{t_1}\) from (5.13) into the Inverse Lagrange resolvent transformation (6.1), we obtain \(\{\tilde{h_0},\tilde{h_1}\}\). We add tildes to \(\{\tilde{h_0},\tilde{h_1}\}\) to distinguish them from \(\{h_0,h_1\}\).
Moreover, \(\tilde{h_0}\) contains the factor \((x-v)\). Hence it is natural to regard \(\tilde{h_0}\) as the minimal polynomial \(g_1(x)\) of \(v\) over \(F_1\). Summarizing the computation, we obtain the following.

\begin{align} &B_1(x)= \ x^2-A_1=0 \qquad A_1=5200 \ \in \ F_0 \notag \\ &a_1=\sqrt{A_1} \quad \Rightarrow \quad F_1 \equiv F_0(a_1) \notag \\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ &minimal \ polynomial: \ \tilde{h_0}=t_0+\tilde{t_1} \equiv g_1(x) \qquad deg(g_1(x))=10 \notag \\ \end{align}

\begin{align} \notag \\ g_1(x)&=x^{10}+30x^9+445x^8++4200x^7+27618x^6+128880x^5 \notag \\ & +425780x^4+974400x^3+1505321x^2+1402050x+2434705 \notag \\ &+a_1 \biggl( x^7+21x^6+229x^5+\frac{2955}{2}x^4+5999x^3+15426x^2+25625x-\frac{6333}{5} \biggr) \in \ F_1[x]\\ \end{align}



[Supplement 1] How to Find a Composition Series of the Frobenius Group

There are two ways to compute a composition series.

(M1) Compute the commutator subgroup series of \(F_{20}\). This is the simplest, but note that doing so yields \([\ F_{20} \ \triangleright \ C_{5} \ \triangleright \ e \ ]\) and misses the dihedral group \(D_5\).

(M2) Compute the conjugacy classes of \(F_{20}\). This method is common in representation theory. It is a bit roundabout, nevertheless it does not miss \(D_5\) as in (M1), and it reveals how all constituents of the composition series are formed.

Here we use method (M2) based on conjugacy classes to find a composition series.

First we recall the Frobenius group of order \(20\) from (3.14). For simplicity we write the automorphisms \(\rho_i\) as plain numbers \([i]\).

\begin{align} F_{20}&=\{ \ \rho_{1},\rho_{8},\rho_{18},\rho_{23},\rho_{30},\rho_{33},\rho_{40},\rho_{43},\rho_{52},\rho_{59}, \notag \\ &\qquad \rho_{61},\rho_{70},\rho_{73},\rho_{80},\rho_{90},\rho_{95},\rho_{99},\rho_{108},\rho_{110},\rho_{117} \ \} \notag \\ \Downarrow \notag \\ F_{20}&=[1,8,18,23,30,33,40,43,52,59,61,70,73,80,90,95,99,108,110,117] \notag \\ \end{align}

The Frobenius group \(F_{20}\) is divided into five conjugacy classes as shown in [Table8-1]. We denote the classes by \(\{\varLambda_i\}\). We then form the product table of conjugacy classes \(\varLambda_i\varLambda_j\) as in [Table8-2] to see which combinations of classes constitute normal subgroups.

[Table8-1] Conjugacy classes of \(F_{20}\)
\(class\)\(\sharp \ \varLambda_i \)\(elements \ \rho_j\)
\({\varLambda_1}\)\(1\)\([1]\)
\({\varLambda_2}\)\(4\)\([43,52,90,117]\)
\({\varLambda_3}\)\(5\)\([8,30,61,95,108]\)
\({\varLambda_4}\)\(5\)\([18,33,70,80,99]\)
\({\varLambda_5}\)\(5\)\([23,40,59,73,110]\)

\(\quad \)

[Table8-2] Product table of conjugacy classes \(\varLambda_i \times \varLambda_j\) in \(F_{20}\)
\({i \backslash j}\)\(\varLambda_1\)\({\varLambda_2}\)\({\varLambda_3}\)\({\varLambda_4}\)\({\varLambda_5}\)
\({\varLambda_1}\)\(\varLambda_1\)\({\varLambda_2}\)\({\varLambda_3}\)\({\varLambda_4}\)\({\varLambda_5}\)
\({\varLambda_2}\)\(\varLambda_2\)\({4\varLambda_1+3\varLambda_2}\)\({4\varLambda_3}\)\({4\varLambda_4}\)\({4\varLambda_5}\)
\({\varLambda_3}\)\(\varLambda_3\)\({4\varLambda_3}\)\({5\varLambda_1+5\varLambda_2}\)\({5\varLambda_5}\)\({5\varLambda_4}\)
\({\varLambda_4}\)\(\varLambda_4\)\({4\varLambda_4}\)\({5\varLambda_5}\)\({5\varLambda_3}\)\({5\varLambda_1+5\varLambda_2}\)
\({\varLambda_5}\)\(\varLambda_5\)\({4\varLambda_5}\)\({5\varLambda_4}\)\({5\varLambda_1+5\varLambda_2}\)\({5\varLambda_3}\)


From the table of products \(\varLambda_i \times \varLambda_j\) in [Table8-2], we find three things:

(1) The single entry in the upper-left \(1\times1\) block contains only \(\{\varLambda_1\}\) (trivial).
(2) The four entries in the upper-left \(2\times2\) block contain only \(\{\varLambda_1,\varLambda_2\}\) (ignore coefficients such as 3, 4).
(3) The nine entries in the upper-left \(3\times3\) block contain only \(\{\varLambda_1,\varLambda_2,\varLambda_3\}\) (again ignore coefficients such as 3, 4, 5).

This means that the normal subgroups \(\{e,C_5,D_5\}\) of the Frobenius group \(F_{20}\) are formed from the following combinations of conjugacy classes.

\begin{align} e=\varLambda_1 \qquad C_5=\varLambda_1+\varLambda_2 \qquad D_5=\varLambda_1+\varLambda_2+\varLambda_3 \notag \\ \end{align}

Summarizing, the composition series of the Frobenius group can be read off from [Table8-2] as follows.

\begin{align} F_{20}&=\varLambda_1+\varLambda_2+\varLambda_3+\varLambda_4+\varLambda_5 \notag \\ &=[1,8,18,23,30,33,40,43,52,59,61,70,73,80,90,95,99,108,110,117] \notag \\ \notag \\ D_5&=\varLambda_1+\varLambda_2+\varLambda_3=[1,8,30,43,52,61,90,95,108,117] \notag \\ \notag \\ C_5&=\varLambda_1+\varLambda_2=[1,43,52,90,117] \notag \\ \notag \\ e&=\varLambda_1=[1] \notag \\ \end{align}


\(\quad \)
home \(\quad \)