Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
[Step3] ILRT (Inverse Lagrange resolvent transformation)
\begin{align}
&\begin{bmatrix}
\tilde{h_0} \\
\tilde{h_1 }
\end{bmatrix}
=
\begin{bmatrix}
1&1 \\
1&-1
\end{bmatrix}
\cdot
\begin{bmatrix}
t_0 \\
\tilde{t_1}
\end{bmatrix}
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
g_0(x)=\tilde{h_0} \cdot \tilde{h_1} \\
g_1(x) \equiv \tilde{h_0} \ \in \ F_1[x]
\end{array}
\right. \\
\end{align}
\begin{align} &B_2(x)= \ x^2-A_2=0 \qquad A_2=\frac{135 {a_1}-11700}{2} \ \in \ F_1 \notag \\ &a_2=\sqrt{A_2} \quad \Rightarrow \quad F_2 \equiv F_1(a_2) \notag \\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ &minimal \ polynomial: \ \tilde{h_0}=t_0+\tilde{t_1} \equiv g_2(x) \qquad deg(g_2(x))=5 \notag \\ \end{align}
\begin{align} \notag \\ g_2(x)&=x^5+15x^4+110x^3+\biggl(\frac{a_1}{2}+450 \biggr)x^2+\biggl(3a_1+1009 \biggr)x+\frac{29a_1}{2}-195\notag \\ &+ a_2 \biggl( {{x}^{2}}+\frac{{a_1} x}{20}+11 x+\frac{43 {a_1}}{200}+\frac{251}{10} \biggr) \quad \in F_2[x]\\ \end{align}
\begin{align} &\varLambda=[\bbox[#FFAAAA]{43,117,90,52,1}]=[\rho_{43},\rho_{117},\rho_{90},\rho_{51},\rho_{1}] \notag \\ &T_1=[\bbox[#FFE680]{18,8,23},1]=[\rho_{18},\rho_{8},\rho_{23},\rho_{1}] \notag \\ &T_2=[\bbox[#A3FFA3]{70,30,110},1] \quad T_3=[\bbox[#A3FFFF]{33,61,73},1] \quad T_4=\bbox[#A3A3FF]{40,95,99},1] \quad T_5=[\bbox[#FFA3FF]{59,108,80},1] \notag \\ \end{align}
\begin{align} \rho_{43}&\equiv \lambda & &\Rightarrow & \varLambda&=[43,117,90,52,1]=[\lambda,\lambda^2,\lambda^3,\lambda^4,\lambda^5] \notag \\ \rho_{18} &\equiv \tau & &\Rightarrow & T_1&=[18,8,23,1]=[\tau,\tau^2,\tau^3,\tau^4] \notag \\ \end{align}
\(\) | \(T_1\) | \(1\) | \(18\) | \(8\) | \(23\) |
---|---|---|---|---|---|
\(\varLambda\) | \(\) | \(\tau^4\) | \(\tau\) | \(\tau^2\) | \(\tau^3\) |
\(1\) | \(\lambda^5\) | \(1\) | \(18\) | \(8\) | \(23\) |
\(43\) | \(\lambda\) | \(43\) | \(33\) | \(30\) | \(40\) |
\(117\) | \(\lambda^2\) | \(117\) | \(99\) | \(108\) | \(110\) |
\(90\) | \(\lambda^3\) | \(90\) | \(80\) | \(95\) | \(73\) |
\(52\) | \(\lambda^4\) | \(52\) | \(70\) | \(61\) | \(59\) |
\(\) | \(\varLambda\) | \(1\) | \(43\) | \(117\) | \(90\) | \(52\) |
---|---|---|---|---|---|---|
\(T_1\) | \(\) | \(\lambda^5\) | \(\lambda\) | \(\lambda^2\) | \(\lambda^3\) | \(\lambda^4\) |
\(1\) | \(\tau^4\) | \(1\) | \(43\) | \(117\) | \(90\) | \(52\) |
\(18\) | \(\tau\) | \(18\) | \(80\) | \(33\) | \(70\) | \(99\) |
\(8\) | \(\tau^2\) | \(8\) | \(61\) | \(95\) | \(108\) | \(30\) |
\(23\) | \(\tau^3\) | \(23\) | \(110\) | \(59\) | \(40\) | \(73\) |