数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
【第1章】爆速ガロア流方程式解法の習得
\( \quad \)
\(\qquad \qquad \qquad f(x)=x^2+x+1 \qquad Galois \ Group:C_2\)
\( \quad \)
▶ Page 1, 2 ▶ Sample Program
\begin{align} f(x)&=x^2+x+1=0 \quad \in Q[x]\\ &=(x-\alpha)(x-\beta) \quad e_1=\alpha+\beta=-1 \qquad e_2=\alpha \cdot \beta=1 \\ \notag \\ v &\equiv 1 \cdot \alpha +2 \cdot \beta \\ \end{align}
\begin{align} \notag \\ \sigma_{1}=\begin{pmatrix} 1&2 \\ 1&2 \end{pmatrix}=\begin{pmatrix} \alpha&\beta \\ \alpha&\beta \end{pmatrix} \quad \sigma_{2}=\begin{pmatrix} 1&2 \\ 2&1 \end{pmatrix}=\begin{pmatrix} \alpha&\beta \\ \beta&\alpha \end{pmatrix} \\ \notag \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} \sigma_{1}(v)=\sigma_1(\alpha+2\beta)= \sigma_1(\alpha)+2\sigma_1(\beta)=\alpha+2\beta \\ \sigma_{2}(v)=\sigma_2(\alpha+2\beta)= \sigma_2(\alpha)+2\sigma_2(\beta)=\beta +2\alpha \\ \end{array} \right. \\ \notag \\ &v_1 \equiv \alpha+2\beta \quad v_2\equiv \beta +2\alpha \\ \end{align}
\begin{align} V(x)&\equiv \displaystyle \prod_{i=1}^2\sigma_i(x-v)=(x-v_{1})(x-v_{2}) \\ &=(x-(\alpha+2\beta))(x-(\beta +2\alpha)) =x^2 -3 ( \alpha+ \beta)x +2 {{\alpha }^{2}}+2 {{\beta }^{2}}+5 \alpha \beta \notag \\ &={x}^{2}-3e_1 \cdot x+e_2+2e_1^{2} \notag \\ \notag \\ &=x^2+3x+3 \quad \in \ Q[x] \\ \end{align}
\begin{align} g_0(x) &\equiv V(x)=v^2+3v+3 \\ \notag \\ g_0(v_1)&=g_0(v)=v^2+3v+3=0 \\ \end{align}
\begin{align} P_\alpha(x)&\equiv V(x)\cdot \Bigl[ \ \sum_{i=1}^2 \sigma_i(\frac{\alpha }{x-v}) \ \Bigr] \quad P_{\beta}(x)\equiv V(x)\cdot \Bigl[ \ \sum_{i=1}^2 \sigma_i(\frac{\beta }{x-v}) \ \Bigr] \\ \end{align} \begin{align} &\Downarrow \notag \\ P_\alpha(x)&=(x-v_{1})(x-v_{2})(\frac{\alpha }{x-{v_1}}+\frac{\beta }{x-{v_2}})=\alpha \cdot (x-v_2)+\beta \cdot (x-v_1) \\ P_{\beta}(x)&=(x-v_{1})(x-v_{2})(\frac{\beta }{x-{v_1}}+\frac{\alpha }{x-{v_2}})=\beta \cdot (x-v_2)+\alpha \cdot (x-v_1) \\ &\Downarrow \notag \\ \notag \\ P_\alpha(x)&=(\alpha+\beta)x-2 {{\alpha }^{2}}-2 {{\beta }^{2}}-2 \alpha \beta \qquad P_\alpha(x)=e_1 \cdot x+2e_2-2e_1^2 \notag \\ P_{\beta}(x)&=(\alpha + \beta)x -{{\alpha }^{2}}-{{\beta }^{2}}-4 \alpha \qquad P_{\beta}(x)= e_1 \cdot x-2e_2-e_1^2 \notag \\ &\Downarrow \notag \\ P_\alpha(x)&=-x \qquad P_{\beta}(x)=-x-3 \quad \in \ Q[x] \\ \end{align}
\begin{align} P_\alpha(v_1)&=\alpha \cdot (v_1-v_2), \quad P_{\beta}(v_1)=\beta \cdot (v_1-v_2)\\ \notag \\ \therefore \ \alpha&=\frac{ P_\alpha(v_1)}{(v_1-v_2)}, \quad \beta=\frac{P_{\beta}(v_1)}{(v_1-v_2)} \\ \end{align}
\begin{align} V^{'}(x)&=(x-v_{2})+(x-v_{1}) \qquad \therefore \ V^{'}(v_1)=(v_1-v_2)\\ \notag \\ &\Downarrow \notag \\ \therefore \ \alpha&=\left.\frac{P_\alpha(x)}{V'(x)}\right|_{x=v_1} \qquad \beta=\left.\frac{P_\beta(x)}{V'(x)}\right|_{x=v_1} \qquad ( \ \star \ v_1=v \ ) \\ \end{align}
\begin{align} V^{'}(v)^{-1}=-\frac{2}{3}v-1 \\ \end{align}
\begin{align} \alpha&=P_{\alpha}(v) \cdot V^{'}(v)^{-1}=(-v) \cdot (-\frac{2}{3}v-1)=\frac{2 {{v}^{2}}}{3}+v=-v-2 \quad (mod \ g_0(v))\\ \beta&=P_{\beta}(v) \cdot V^{'}(v)^{-1}=(-v-3) \cdot (-\frac{2}{3}v-1)=\frac{2 {{v}^{2}}}{3}+3 v+3=v+1 \quad (mod \ g_0(v))\\ \notag \\ &\therefore \ \alpha=-v-2 \quad \beta=v+1 \\ \end{align}
\begin{align} v_1=\alpha+2\beta=v \qquad v_2=\beta +2\alpha=-v-3 \\ \end{align}
\begin{align} g_0(v_2)&=(-v-3)^2+3(-v-3)+3=v^2+6v+9-3v-9+3 \notag \\ &=v^2+3v+3=0 \quad (mod \ g_0(v)) \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} \alpha=-v-2\\ \beta=v+1 \\ \end{array} \right. \qquad \left\{ \begin{array}{l} v_1=v \\ v_2=-v-3 \\ \end{array} \right. \qquad \{\alpha,\beta\}, \{v_1,v_2\} \ \in \ Q(v) \\ \notag \\ &g_0(x)=(x-v_1)(x-v_2)=(x-v)\bigl(x-(-v-3)\bigr) \ \in \ Q(v)[x]\\ \end{align}