数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} f(x)&=x^3-3x+1 \\ g(v)&=v^3-9v-9 \\ \notag \\ f(x+v)&=(x+v)^3-3(x+v)+1 \notag \\ &=v^3+(3x)v^2+(3x^2-3)v+(x^3-3x-1) \\ \end{align}
\begin{align} &SylM=\begin{bmatrix} 1 & 3x & (3x^2-3) & (x^3-3x+1) & 0 & 0 \\ 0 & 1 & 3x & (3x^2-3) & (x^3-3x+1) & 0 \\ 0 & 0 & 1 & 3x & (3x^2-3) & (x^3-3x+1) \\ 1 & 0 & -9 & -9 & 0 & 0 \\ 0 & 1 & 0 & -9 & -9 & 0 \\ 0 & 0 & 1 & 0 & -9 & -9 \end{bmatrix}\\ \end{align}
\begin{align} &Res(f(x+v) ,g(v),v)=det(SylM) \notag \\ &\qquad =-{{x}^{9}}+36 {{x}^{7}}-30 {{x}^{6}}-351 {{x}^{5}} +396 {{x}^{4}}+1023 {{x}^{3}}-1080 {{x}^{2}}-612 x+296 \\ \notag \\ &\qquad =-(x^3-21x+37)(x^3-12x-8)(x^3-3x+1)=-R_1(x) \cdot R_2(x) \cdot R_3(x)\\ \notag \\ \end{align}
\begin{align} &R_1(x)=x^3-21x+37, \quad R_2(x)=x^3-12x-8, \quad R_3(x)=x^3-3x+1\\ \end{align}
\begin{align} f(x)&=a(x-\alpha_1)(x-\alpha_2)....(x-\alpha_n) \\ g(x)&=b(x-\beta_1)(x-\beta_2)....(x-\beta_m) \\ \notag \\ Res &(f(\bbox[#FFFF00]{x}),g(\bbox[#FFFF00]{x}),\bbox[#FFFF00]{x})=a^{m}b^{n}\prod_{i=1}^{n}\prod_{j=1}^{m}(\alpha_i-\beta_j)\\ \end{align}
\begin{align} f(x)&=(x-\alpha)(x-\beta)(x-\gamma) \\ \Downarrow \notag \\ f(x+v)&=(x+v-\alpha)(x+v-\beta)(x+v-\gamma) \\ \Downarrow \notag \\ f(v+x)&=(v+x-\alpha)(v+x-\beta)(v+x-\gamma-x) \notag \\ &=\bigl(v-\bbox[#FFFF00]{(\alpha-x)}\bigr)\bigl(v-\bbox[#FFFF00]{(\beta-x)}\bigr)\bigl(v-\bbox[#FFFF00]{(\gamma-x)}\bigr) \\ \notag \\ g(v)&=(v-\bbox[#FFFF00]{v_1})(v-\bbox[#FFFF00]{v_4})(v-\bbox[#FFFF00]{v_5})\\ \notag \\ \end{align}
\begin{align} &Res(f(\bbox[#FFFF00]{v}+x),g(\bbox[#FFFF00]{v}),\bbox[#FFFF00]{v})=\prod_{i=1}^{3}\prod_{j=1}^{3}(\alpha_i-\beta_j) \\ &\{\alpha_1 \leftarrow (\alpha-x) , \alpha_2 \leftarrow (\beta-x) , \alpha_3 \leftarrow (\gamma-x) \},\{\beta_1 \leftarrow v_1, \beta_2 \leftarrow v_4, \beta_3 \leftarrow v_5 \} \\ \end{align} \begin{align} &\Downarrow \notag \\ Res(f(x+v),g(v),v)=&\bigl((\alpha-x)-v_1\bigr)\bigl((\beta-x)-v_1\bigr)\bigl((\gamma-x)-v_1\bigr) \notag \\ &\bigl((\alpha-x)-v_4\bigr)\bigl((\beta-x)-v_4\bigr)\bigl((\gamma-x)-v_4\bigr) \notag \\ &\bigl((\alpha-x)-v_5\bigr)\bigl((\beta-x)-v_5\bigr)\bigl((\gamma-x)-v_5\bigr)\\ &\Downarrow \notag \\ Res(f(x+v),g(v),v)=(-1)&(x+v_1-\alpha)(x+v_1-\beta)(x+v_1-\gamma) \notag \\ &(x+v_4-\alpha)(x+v_4-\beta)(x+v_4-\gamma) \notag \\ &(x+v_5-\alpha)(x+v_5-\beta)(x+v_5-\gamma) \\ \end{align}