数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} Res(f(x+v),g(v),v)&=\prod_{i=1}^{3}\prod_{j=1}^{3}(\alpha_i-\beta_j) \notag \\ &\Downarrow \notag \\ \end{align} \begin{align} Res(f(x+v),g(v),v)=(-1)&\bbox[#FFFF00]{(x+v_1-\alpha)}\bbox[#7FFF00]{(x+v_1-\beta)}\bbox[#00FFFF]{(x+v_1-\gamma)} \notag \\ &(x+v_4-\alpha)(x+v_4-\beta)(x+v_4-\gamma) \notag \\ &(x+v_5-\alpha)(x+v_5-\beta)(x+v_5-\gamma) \\ \end{align}
\begin{align} Y_1 \equiv \bbox[#FFFF00]{(x+v_1-\alpha)}\quad Y_2 &\equiv \bbox[#7FFF00]{(x+v_1-\beta)} \quad Y_3 \equiv \bbox[#00FFFF]{(x+v_1-\gamma) } \\ \end{align}
\( i \backslash j \) | \(\rho_i(v_1)\) | \(\rho_i(v_4)\) | \(\rho_i(v_5)\) |
---|---|---|---|
\(\rho_1\) | \(v_1\) | \(v_4\) | \(v_5\) |
\(\rho_4\) | \(v_4\) | \(v_5\) | \(v_1\) |
\(\rho_5\) | \(v_5\) | \(v_1\) | \(v_4\) |
\( i \backslash j \) | \(\rho_i(\alpha)\) | \(\rho_i(\beta)\) | \(\rho_i(\gamma)\) |
---|---|---|---|
\(\rho_1\) | \(\alpha\) | \(\beta\) | \(\gamma\) |
\(\rho_4\) | \(\beta\) | \(\gamma \) | \(\alpha\) |
\(\rho_5\) | \(\gamma\) | \(\alpha\) | \(\beta\) |
\( i \backslash j \) | \(\rho_i(Y_1)\) | \(\rho_i(Y_2)\) | \(\rho_i(Y_3)\) |
---|---|---|---|
\(\rho_1\) | \(x+v_1-\alpha\) | \(x+v_1-\beta\) | \(x+v_1-\gamma\) |
\(\rho_4\) | \(x+v_4-\beta\) | \(x+v_4-\gamma\) | \(x+v_4-\alpha\) |
\(\rho_5\) | \(x+v_5-\gamma\) | \(x+v_5-\alpha\) | \(x+v_5-\beta\) |
\begin{align} Res(f(x+v),g(v),v)=(-1)& \left\{\bbox[#FFFF00]{ (x+v_1-\alpha) }\bbox[#7FFF00]{(x+v_1-\beta)}\bbox[#00FFFF]{(x+v_1-\gamma)} \right \} \notag \\ \times &\left\{\bbox[#00FFFF]{ (x+v_4-\alpha)}\bbox[#FFFF00]{ (x+v_4-\beta)}\bbox[#7FFF00]{(x+v_4-\gamma)} \right \} \notag \\ \times &\left\{\bbox[#7FFF00]{(x+v_5-\alpha)}\bbox[#00FFFF]{(x+v_5-\beta)}\bbox[#FFFF00]{ (x+v_5-\gamma)} \right \} \\ \notag \\ &\Downarrow \notag \\ \end{align} \begin{align} H_1=\prod_{i \ \in A_3} \rho_i \bigl(Y_1\bigr) &= \bbox[#FFFF00]{(x+ v_1-\alpha)(x+ v_4-\beta)(x+ v_5-\gamma)} \notag \\ H_2=\prod_ {i \ \in A_3}\rho_i \bigl(Y_2\bigr) &=\bbox[#7FFF00]{(x+ v_1-\beta)(x+ v_4-\gamma)(x+ v_5-\alpha)} \\ H_3=\prod_{i \ \in A_3} \rho_i \bigl(Y_3\bigr) &=\bbox[#00FFFF]{(x+ v_1-\gamma)(x+ v_4-\alpha)(x+ v_5-\beta)} \notag \\ &\quad \Downarrow \notag \\ \notag \\ Res( \ f(x + v), \ &g(v), \ v)=(-1) \cdot H_1 \cdot H_2 \cdot H_3 \\ \notag \\ \rho_i\bigl(H_j\bigr)=H_j \quad [ \ &\rho_i \in A_3 \ ],\ [j=1,2,3] \quad \Rightarrow \quad \therefore \ \{H_1,H_2,H_3\} \ \in \ F_0[x] \\ \end{align}
\begin{align} &\left[ \quad \alpha =\frac{6-{{v}^{2}}}{3}, \quad \beta =\frac{2 {{v}^{2}}-3 v-12}{3}, \quad \gamma=\frac{-{{v}^{2}}+3 v+6}{3} \quad \right]\\ \notag \\ &[ \quad {v_1}=v, \quad {v_4}=-{{v}^{2}}+v+6, \quad {v_5}={{v}^{2}}-2 \quad ] \\ \notag \\ &\qquad \qquad \Downarrow \notag \\ \end{align}
\begin{align} \notag \\ \bbox[#FFFF00]{ H_1 }&=(x+v_1-\alpha)(x+v_4-\beta)(x+v_5-\gamma) \notag \\ &=\biggl(x+v-\frac{6-{{v}^{2}}}{3}\biggr)\biggl(x+(-v^2+v+6)-\frac{2 {{v}^{2}}-3 v-12}{3} \biggr)\biggl(x+(v^2-2v-6)-\frac{-{{v}^{2}}+3 v+6}{3}\biggr) \notag \\ & =x^3-21x+37 \quad (mod \ g(v)) \notag \\ \notag \\ \bbox[#7FFF00]{ H_2 }&=(x+v_1-\beta)(x+v_4-\gamma)(x+v_5-\alpha) \notag \\ &=\biggl(x+v-\frac{2 {{v}^{2}}-3 v-12}{3} \biggr)\biggl(x+(-v^2+v+6)-\frac{-{{v}^{2}}+3 v+6}{3}\biggr)\biggl(x+(v^2-2v-6)-\frac{6-{{v}^{2}}}{3}\biggr) \notag \\ &=x^3-12x-8 \quad (mod \ g(v)) \notag \\ \notag \\ \bbox[#00FFFF]{ H_3 }&=(x+v_1-\gamma)(x+v_4-\alpha)(x+v_5-\beta) \notag \\ &=\biggl(x+v-\frac{-{{v}^{2}}+3 v+6}{3}\biggr)\biggl(x+(-v^2+v+6)-\frac{6-{{v}^{2}}}{3}\biggr)\biggl(x+(v^2-2v-6)-\frac{2 {{v}^{2}}-3 v-12}{3} \biggr) \notag \\ &=x^3-3x+1 \quad (mod \ g(v)) \notag \\ \end{align}
\begin{align} \notag \\ \therefore \ Res(f(x+v),g(v),v) &=(-1)(x^3-21x+37)(x^3-12x-8)(x^3-3x+1) \notag \\ &=(-1) \cdot H_1 \cdot H_2 \cdot H_3 \notag \\ \end{align}