数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術


Profile
Name: scruta \(\quad\) Daily life: mowing

Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14

\(\qquad\)


Contact

mailaddress



Copyright © 2023 scruta

【第5章】恐怖の因数分解:Trager Algorithm

\( \quad \)

\(\qquad \qquad \qquad f(x)=x^3-3x+1 \qquad Galois \ Group:A_3 \quad GCD \)

\( \quad \)

▶ Page    1,   2,   3,   4,   5           ▶ Sample Program

\(\quad \)
home \(\quad \)

\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)

【5-7】終結式 \(Res(f(x+s \cdot v),g(v),v)\) の場合

\(\nextSection\)
今度は、\(s \neq 1\) の場合の式変形を考えてみます。
一般論になると解かりずらくなるので、第2章の \(f(x)=x^3+3x+1\) を例として分析してみます。
この場合 \(s=\pm 1\) とすると、終結式が無平方でなくなるので、 \(s=2\) として計算してみます。
先ず \(f(x+s \cdot v)\) を \(v\) の方程式と考えて、(7.3)の様に根を明示するように式変形します。
第2章より \(Gal(F_0(v)/F_0)=S_3\) です。 \(g(v)\) の根はもちろん \(\{v_1,v_2,..,v_6\}\) です。

\begin{align} f(x)&=(x-\alpha)(x-\beta)(x-\gamma) \\ \Downarrow \notag \\ f(x+s \cdot v)&=(x+s \cdot v-\alpha)(x+s \cdot v-\beta)(x+s \cdot v-\gamma) \\ \Downarrow \notag \\ f(s \cdot v+x)&=(s \cdot v+x-\alpha)(s \cdot v+x-\beta)(s \cdot v+x-\gamma-x) \notag \\ &=s^3 \cdot \bigl( v-\bbox[#FFFF00]{\frac{(\alpha-x)}{s}} \bigr) \bigl( v-\bbox[#FFFF00]{\frac{(\beta-x)}{s}} \bigr) \bigl(v-\bbox[#FFFF00]{ \frac{(\gamma-x)}{s}} \bigr) \\ \notag \\ g(v)&=(v-\bbox[#FFFF00]{v_1})(v-\bbox[#FFFF00]{v_2})(v-\bbox[#FFFF00]{v_3})(v-\bbox[#FFFF00]{v_4})(v-\bbox[#FFFF00]{v_5})(v-\bbox[#FFFF00]{v_6})\\ \notag \\ \end{align}

\(f(s \cdot v +x)\) と \(g(v)\) の主変数を \(v\) とした時、それぞれの根は、(7.3)(7.4)の黄色で示された部分です。それらの根を、定義式 (7.5)の \( \{ \alpha_i,\beta_j \} \) に代入します。 (7.7)までは問題なく式変形は理解できると思います。

\begin{align} &Res(f(x+s \cdot v),g(v),v)=a^m \cdot b^n \prod_{i=1}^{n}\prod_{j=1}^{m}(\alpha_i-\beta_j) \\ \end{align}

\begin{align} &\{ \ n=deg(f(x))=3, \ m=deg(g(v))=6 \ \}, \quad \{ \ a \leftarrow s^3, \quad b \leftarrow 1 \ \} \notag \\ \notag \\ &\biggl\{\alpha_1 \leftarrow \frac{(\alpha-x)}{s} , \quad \alpha_2 \leftarrow \frac{(\beta-x)}{s} , \quad \alpha_3 \leftarrow \frac{(\gamma-x)}{s} \biggr\}, \quad \{ \ \beta_i \leftarrow v_i, \quad [ \ i=1,2,..,6 \ ] \ \} \notag \\ \end{align}

\begin{align} &\quad \Downarrow \notag \\ Res(f(x &+s \cdot v),g(v) ,v) \notag \\ =(s^3)^6 &\times \biggl(\frac{(\alpha-x)}{s}-v_1\biggr)\biggl(\frac{(\beta-x)}{s}-v_1\biggr)\biggl(\frac{(\gamma-x)}{s}-v_1\biggr) \notag \\ &\times \biggl(\frac{(\alpha-x)}{s}-v_2\biggr)\biggl(\frac{(\beta-x)}{s}-v_2\biggr)\biggl(\frac{(\gamma-x)}{s}-v_2\biggr) \notag \\ &\times \biggl(\frac{(\alpha-x)}{s}-v_3\biggr)\biggl(\frac{(\beta-x)}{s}-v_3\biggr)\biggl(\frac{(\gamma-x)}{s}-v_3\biggr) \notag \\ &\times \biggl(\frac{(\alpha-x)}{s}-v_4\biggr)\biggl(\frac{(\beta-x)}{s}-v_4\biggr)\biggl(\frac{(\gamma-x)}{s}-v_4\biggr) \notag \\ &\times \biggl(\frac{(\alpha-x)}{s}-v_5\biggr)\biggl(\frac{(\beta-x)}{s}-v_5\biggr)\biggl(\frac{(\gamma-x)}{s}-v_5\biggr) \notag \\ &\times \biggl(\frac{(\alpha-x)}{s}-v_6\biggr)\biggl(\frac{(\beta-x)}{s}-v_6\biggr)\biggl(\frac{(\gamma-x)}{s}-v_6\biggr) \\ &\quad \Downarrow \notag \\ Res(f(x &+s \cdot v),g(v),v)\notag \\ &=\left\{\bbox[#FFFF00]{(x+s \cdot v_1-\alpha)}\bbox[#7FFF00]{(x+s \cdot v_1-\beta)}\bbox[#00FFFF]{(x+s \cdot v_1-\gamma)} \right \} \notag \\ & \times \left\{\bbox[#FFFF00]{(x+s \cdot v_2-\alpha)}\bbox[#00FFFF]{(x+s \cdot v_2-\beta)}\bbox[#7FFF00]{(x+s \cdot v_2-\gamma)} \right \} \notag \\ & \times \left\{\bbox[#7FFF00]{(x+s \cdot v_3-\alpha)}\bbox[#FFFF00]{(x+s \cdot v_3-\beta)}\bbox[#00FFFF]{(x+s \cdot v_3-\gamma)} \right \} \\ & \times \left\{\bbox[#00FFFF]{(x+s \cdot v_4-\alpha)\bbox[#FFFF00]{(x+s \cdot v_4-\beta)}\bbox[#7FFF00]{(x+s \cdot v_4-\gamma)}} \right \} \notag \\ & \times \left\{\bbox[#7FFF00]{(x+s \cdot v_5-\alpha)}\bbox[#00FFFF]{(x+s \cdot v_5-\beta)}\bbox[#FFFF00]{(x+s \cdot v_5-\gamma)} \right \} \notag \\ & \times \left\{\bbox[#00FFFF]{(x+s \cdot v_6-\alpha)}\bbox[#7FFF00]{(x+s \cdot v_6-\beta)}\bbox[#FFFF00]{(x+s \cdot v_6-\gamma)} \right \} \notag \\ \notag \\ \end{align}

(7.7)の第1行目の3つの一次式を順に \(\{Y_1,Y_2,Y_3\}\) とします。この \(\{Y_i\}\) に対してガロア群 \(S_3\) の全ての要素で変換した式を集めて積にした 多項式を(7.9-11)に示すように \(\{H_1,H_2,H_3\}\) とします。 従って \(\{H_i\}\) は \(S_3\) の変換に対して不変 ですから(7.13)に示すように \(\{H_i\}\) は \(F_0[x]\) の多項式である事も判ります。

\begin{align} Y_1=\bbox[#FFFF00]{(x+s \cdot v_1- \alpha)} &\quad Y_2=\bbox[#7FFF00]{(x+s \cdot v_1-\beta)} \quad Y_3=\bbox[#00FFFF]{(x+s \cdot v_1-\gamma) } \\ \notag \\ H_1=\prod_{i=1}^{6} \rho_i \bigl(Y_1\bigr) &= \bbox[#FFFF00]{(x+s \cdot v_1-\alpha)(x+s \cdot v_2-\alpha)(x+s \cdot v_3-\beta)} \notag \\ &\times \bbox[#FFFF00]{(x+s \cdot v_4-\beta)(x+s \cdot v_5-\gamma)(x+s \cdot v_6-\gamma)} \\ H_2=\prod_{i=1}^{6} \rho_i \bigl(Y_2\bigr) &=\bbox[#7FFF00]{(x+s \cdot v_1-\beta)(x+s \cdot v_2-\gamma)(x+s \cdot v_3-\alpha)} \notag \\ &\times \bbox[#7FFF00]{ (x+s \cdot v_4-\gamma)(x+s \cdot v_5-\alpha)(x+s \cdot v_6-\beta)} \\ H_3=\prod_{i=1}^{6} \rho_i \bigl(Y_3\bigr) &= \bbox[#00FFFF]{(x+s \cdot v_1-\gamma)(x+s \cdot v_2-\beta)(x+s \cdot v_3-\gamma)} \notag \\ &\times \bbox[#00FFFF]{ (x+s \cdot v_4-\alpha)(x+s \cdot v_5-\beta)(x+s \cdot v_6-\alpha)} \\ \notag \\ &\quad \Downarrow \notag \\ \notag \\ Res( \ f(x +s \cdot v), \ &g(v), \ v)=H_1 \cdot H_2 \cdot H_3 \\ \notag \\ \rho_i\bigl(H_j\bigr)=H_j \quad [ \ &\rho_i \in S_3 \ ],\ [j=1,2,3] \quad \Rightarrow \quad \therefore \ \{H_1,H_2,H_3\} \ \in \ F_0[x] \\ \end{align}


3つの多項式の積 \(\{H_1 \cdot H_2 \cdot H_3\}\) は、(7.7)と等しくなっています。この事は、(7.12)に示すように \( Res(f(x +s \cdot v),g(v) ,v)\) が 3個の \(F_0[x]\) の多項式に因数分解されることも意味しています。
以上の計算は、節【5-4】の(4.1)から(4.6)までの式変形に相当します。ここまで変形できれば、節【5-5】に相当する論理展開は記述する必要は ないと思いますので省略します。

以下 \(s=2\) として実際に終結式を計算してみます。

\begin{align} &\left\{ \begin{array}{l} f(x+2 \cdot v)=(x+2v)^3+3(x+2v)+1 =x^3+6vx^2+3(4v^2+1)x+8v^3+6v+1\\ g(v)=v^6+18v^4+81v^2+135 \\ \end{array} \right. \notag \\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ &Res(f(x +2 \cdot v),g(v),v)=R_1(x) \cdot R_2(x) \cdot R_3(x) \\ \notag \\ &\left\{ \begin{array}{l} R_1(x)=x^6+42x^4+20x^3+441x^2+420x+1315 \\ R_2(x)=x^6+78x^4-70x^3+1521x^2-2730x+6085 \\ R_3(x)=x^6+114x^4+56x^3+3249x^2+3192x+31159 \\ \end{array} \right. \\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ &\left\{ \begin{array}{l} \tilde{Y}_1(x) \equiv x+2v-x_1=GCD(R_1(x),f(x+2v))=x-\frac{{{v}^{4}}}{18}-\frac{5 {{v}^{2}}}{6}+\frac{3 v}{2}-2 \\ \tilde{Y}_2(x) \equiv x+2v-x_2=GCD(R_2(x),f(x+2v))=x+\frac{{{v}^{4}}}{9}+\frac{5 {{v}^{2}}}{3}+2 v+4 \\ \tilde{Y}_3(x) \equiv x+2v-x_3=GCD(R_3(x),f(x+2v))=x-\frac{{{v}^{4}}}{18}-\frac{5 {{v}^{2}}}{6}+\frac{5 v}{2}-2 \\ \end{array} \right. \\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ &f(x)=\tilde{Y}_1(x-2 \cdot v) \cdot \tilde{Y}_2(x-2 \cdot v) \cdot \tilde{Y}_3(x-2 \cdot v)=(x-x_1)(x-x_2)(x-x_3) \\ \notag \\ &\biggl[ \ x_1=\frac{{{v}^{4}}}{18}+\frac{5 {{v}^{2}}}{6}+\frac{v}{2}+2, \quad x_2=-\frac{{{v}^{4}}}{9}-\frac{5 {{v}^{2}}}{3}-4, \quad x_3=\frac{{{v}^{4}}}{18}+\frac{5 {{v}^{2}}}{6}-\frac{v}{2}+2 \ \biggr] \\ \end{align}


\(\quad \)
home \(\quad \)