数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
【第4章】超クール!終結式
\( \quad \)
\(\qquad \qquad \qquad f(x)=x^3-3x+1 \qquad Galois \ Group:A_3\)
\( \quad \)
▶ Page 1, 2, 3, 4 ▶ Sample Program
\begin{align} f(x)&=(x-\alpha)(x-\beta)(x-\gamma)= x^3-3x+1=0 \qquad \in F_0[x] \\ \notag \\ v&=1\cdot\alpha+2\cdot\beta+3\cdot\gamma \end{align}
\begin{align} f(x)&=x^3-3x+1 \notag \\ \notag \\ f(x)&=(x-\alpha)(x^2+\alpha x+\alpha^2-3)+(\alpha^3-3 \alpha +1) \notag \\ &=(x-\alpha)q_1(x)+r_1\\ \notag \\ q_1(x)&=(x-\beta)( x+\alpha+\beta )+(\beta^2+\alpha \beta +\alpha^2-3) \notag \\ &=(x-\beta)q_2(x)+r_2\\ \notag \\ q_2(x)&=(x-\gamma) \cdot 1+(\alpha+\beta+\gamma) \notag \\ &=(x-\gamma)q_3(x)+r_3\\ \end{align}
\begin{align} f(\alpha)=0 \quad &\Rightarrow \quad r_1=\alpha^3-3 \alpha +1=0\\ q_1(\beta)=0 \quad &\Rightarrow \quad r_2=\beta^2+\alpha \beta +\alpha^2-3=0\\ q_2(\gamma)=0 \quad &\Rightarrow \quad r_3=\alpha+\beta+\gamma=0\\ eq(1.2) \quad &\Rightarrow \quad r_4 \equiv v-(\alpha+2\beta+3\gamma)=0\\ \end{align}
\begin{align} &s_1:resultant(r_4,r_3,\gamma); & s_1&=-\beta -2 \alpha -v=0 \\ & \qquad \qquad \Downarrow \notag \\ &s_2:resultant(s_1,r_2,\beta); & s_2&=3 {{\alpha }^{2}}+3 v \alpha +{{v}^{2}}-3=0 \\ & \qquad \qquad \Downarrow \notag \\ &s_3:resultant(s_2,r_1,\alpha); & s_3&={{v}^{6}}-18 {{v}^{4}}+81 {{v}^{2}}-81=0 \\ \end{align}
\begin{align} &V(x) \equiv x^6-18x^4+81x^2-81=(x^3-9x-9)(x^3-9x+9) \\ \end{align}
\begin{align} &g_0(x) \equiv x^3-9x-9 \qquad \therefore \ g_0(v)=v^3-9v-9=0\\ \end{align}
\begin{align} &V(x) =(x-v_1)(x-v_2)(x-v_3)(x-v_4)(x-v_5)(x-v_6) \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} \sigma_1 (v)=v_1=\alpha+2\beta+3\gamma &\sigma_2 (v)=v_2=\alpha+2\gamma+3\beta \\ \sigma_3 (v)=v_3=\beta+2\alpha+3\gamma &\sigma_4 (v)=v_4=\beta+2\gamma+3\alpha \\ \sigma_5 (v)=v_5=\gamma+2\alpha+3\beta &\sigma_6 (v)=v_6=\gamma+2\beta+3\alpha \end{array} \right. \\ \end{align}