数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
【第4章】超クール!終結式
\( \quad \)
\(\qquad \qquad \qquad f(x)=x^3-3x+1 \qquad Galois \ Group:A_3\)
\( \quad \)
▶ Page 1, 2, 3, 4 ▶ Sample Program
\begin{align} &f_g:factor(f(x),g_0(v)); \\ \notag \\ &\Rightarrow \quad f_g=\frac{\left( 3 x-2 {{v}^{2}}+3 v+12\right) \, \left( 3 x+{{v}^{2}}-6\right) \, \left( 3 x+{{v}^{2}}-3 v-6\right) }{27} \\ \notag \\ &solve(f_g,x); \\ \notag \\ &\Rightarrow \quad \left[ \ x_1=-\frac{{{v}^{2}}}{3}+v+2, \quad x_2=-\frac{{{v}^{2}}}{3}+2, \quad x_3=\frac{2 {{v}^{2}}}{3}-v-4 \ \right]\\ \end{align}
\begin{align} &w = x_{1}+2 x_{2}+3 x_{3} \\ \notag \\ &\left\{ \begin{array}{l} &\tau_1 (w)=w_1=x_1+2x_2+3x_3 & &\tau_2 (w)=w_2=x_1+2x_3+3x_2 \\ &\tau_3 (w)=w_3=x_2+2x_1+3x_3 & &\tau_4 (w)=w_4=x_2+2x_3+3x_1 \\ &\tau_5 (w)=w_5=x_3+2x_1+3x_2 & &\tau_6 (w)=w_6=x_3+2x_2+3x_1 \\ \end{array} \right. \\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ &\left\{ \begin{array}{l} &w_1= {{v}^{2}}-2 v-6 & &w_2= -v \\ &w_3= {{v}^{2}}-v-6 & &\bbox[#FFFF00]{w_4= v } \\ &w_5=-{{v}^{2}}+v+6 & &w_6= -{{v}^{2}}+2 v+6 \end{array} \right. \\ \end{align}
\begin{align} &\alpha=-\frac{{{v}^{2}}}{3}+2 \qquad \beta= \frac{2 {{v}^{2}}}{3}-v-4 \qquad \gamma= -\frac{{{v}^{2}}}{3}+v+2 \\ \notag \\ &\left\{ \begin{array}{l} &\sigma_1 (v)={v_1}=v & &\sigma_2 (v)={v_2}={{v}^{2}}-v-6 \\ &\sigma_3 (v)={v_3}= -{{v}^{2}}+2 v+6 & &\sigma_4 (v)={v_4}= -{{v}^{2}}+v+6 \\ &\sigma_5 (v)={v_5}= {{v}^{2}}-2 v-6 & &\sigma_6 (v)={v_6}=-v \\ \end{array} \right. \end{align}
\begin{align} V(v_2)&=v_2^6-18v_2^4+81v_2^2-81 \notag \\ \notag \\ &={{v}^{12}}-6 {{v}^{11}}-21 {{v}^{10}}+160 {{v}^{9}}+177 {{v}^{8}}-1734 {{v}^{7}}-935 {{v}^{6}}+9612 {{v}^{5}} \notag \\ &\quad +4491 {{v}^{4}}-27378 {{v}^{3}}-16443 {{v}^{2}}+32076 v+26163 \notag \\ &=0 \qquad ( \ mod \ g_0(v) \ )\\ \notag \\ V(v_1)&=V(v_2)=V(v_3)=V(v_4)=V(v_5)=V(v_6)=0 \quad ( \ mod \ g_0(v) \ )\\ \end{align}
\begin{align} &\left\{ \begin{array}{l} &g_0(v_1)={{v}^{3}}-9 v-9= 0 \\ &g_0(v_2)={{v}^{6}}-3 {{v}^{5}}-15 {{v}^{4}}+35 {{v}^{3}}+81 {{v}^{2}}-99 v-171=-18 \\ &g_0(v_3)={{v}^{6}}-3 {{v}^{5}}-15 {{v}^{4}}+35 {{v}^{3}}+81 {{v}^{2}}-99 v-171=-18 \\ &g_0(v_4)=-{{v}^{6}}+3 {{v}^{5}}+15 {{v}^{4}}-35 {{v}^{3}}-81 {{v}^{2}}+99 v+153=0 \\ &g_0(v_5)={{v}^{6}}-6 {{v}^{5}}-6 {{v}^{4}}+64 {{v}^{3}}+27 {{v}^{2}}-198 v-171=0 \\ &g_0(v_6)=-{{v}^{3}}+9 v-9=-18 \end{array} \right. \\ \end{align} \begin{align} \therefore \quad g_0(v_1)&=g_0(v_4)=g_0(v_5)=0 \\ g_0(v_2)&=g_0(v_3)=g_0(v_6)=-18 \\ \end{align}