数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
【第4章】超クール!終結式
\( \quad \)
\(\qquad \qquad \qquad f(x)=x^3-3x+1 \qquad Galois \ Group:A_3\)
\( \quad \)
▶ Page 1, 2, 3, 4 ▶ Sample Program
\begin{align} &\left\{ \begin{array}{l} \rho_{1}(v) &\equiv v_1= v \\ \rho_{4}(v) &\equiv v_4= -{{v}^{2}}+v+6 \\ \rho_{5}(v) &\equiv v_5= {{v}^{2}}-2 v-6 \\ \end{array} \right. \\ \end{align}
\begin{align} \rho_5 \circ \rho_4(v)&=\rho_5(v_4)=\rho_5(-v^2+v+6) \notag \\ &=-\rho_5(v^2)+\rho_5(v)+\rho_5(6)=-\rho_5(v) \cdot \rho_5(v)+\rho_5(v)+6 \notag \\ &=-v_5^2+v_5+6=-(v^2-2v-6)^2+(v^2-2v-6)+6 \notag \\ &=-{{v}^{4}}+4 {{v}^{3}}+9 {{v}^{2}}-26 v-36=v \quad ( \ mod \ g_0(v) \ ) \notag \\ &=v_1=\rho_1(v) \notag \\ \end{align} \begin{align} & \therefore \ \rho_5 \circ \rho_4(v)=\rho_5(v_4)=v=v_1=\rho_1(v) \\ &\qquad \qquad \Downarrow \notag \\ &\qquad \rho_5 \circ \rho_4=\rho_1 \qquad \rho_5(v_4)=v_1\\ \end{align}
\( i \backslash j \) | \(\rho_1\) | \(\rho_4\) | \(\rho_5\) |
---|---|---|---|
\(\rho_1\) | \(\rho_1\) | \(\rho_4\) | \(\rho_5\) |
\(\rho_4\) | \(\rho_4\) | \(\rho_5\) | \(\rho_1\) |
\(\rho_5\) | \(\rho_5\) | \(\rho_1\) | \(\rho_4\) |
\( i \backslash j \) | \(v_1\) | \(v_4\) | \(v_5\) |
---|---|---|---|
\(\rho_1\) | \(v_1\) | \(v_4\) | \(v_5\) |
\(\rho_4\) | \(v_4\) | \(v_5\) | \(v_1\) |
\(\rho_5\) | \(v_5\) | \(v_1\) | \(v_4\) |
\begin{align} \beta&=\frac{2v^2}{3}-v-4, \qquad v_4=-v^2+v+6 \\ \notag \\ \rho_4(\beta)&=\rho_4\left(\frac{2v^2}{3}-v-4 \right)=\frac{2v_4^2}{3}-v_4-4 \\ &=\frac{2(-v^2+v+6)^2}{3}-(-v^2+v+6)-4 \notag \\ &=\frac{2 {{v}^{4}}}{3}-\frac{4 {{v}^{3}}}{3}-\frac{19 {{v}^{2}}}{3}+7 v+14\notag \\ &=-\frac{{{v}^{2}}}{3}+v+2=\gamma \quad ( \ mod \ g_0(v) \ ) \\ \therefore \ \rho_4(\beta)&=\gamma\\ \end{align}
\( \ \) | \(\rho_i(\alpha)\) | \(\rho_i(\beta)\) | \(\rho_i(\gamma)\) |
---|---|---|---|
\(\rho_1\) | \(\alpha\) | \(\beta\) | \(\gamma\) |
\(\rho_4\) | \(\beta\) | \(\gamma\) | \(\alpha\) |
\(\rho_5\) | \(\gamma\) | \(\alpha\) | \(\beta\) |
\begin{align}
Gal(F_0(v)/F_0)= A_3=\{\rho_1,\rho_4,\rho_5\} \cong C_3
\end{align}