数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
【第4章】超クール!終結式
\( \quad \)
\(\qquad \qquad \qquad f(x)=x^3-3x+1 \qquad Galois \ Group:A_3\)
\( \quad \)
▶ Page 1, 2, 3, 4 ▶ Sample Program
Step1 LRT(Lagrahge Resolvent transformation)
\begin{align}
&Gal(F_1/F_0)=A_3/e \equiv C_3=\{\rho_1,\rho_4,\rho_5\} \\
\notag \\
&\left\{
\begin{array}{l}
h_0=\rho_1(x-v)=(x-v_1)=x-v \\
h_1=\rho_4(x-v)=(x-v_4)=x-(-v^2+v+6) \\
h_2=\rho_5(x-v)=(x-v_5)=x-(v^2-2v-6) \\
\end{array}
\right. \\
\end{align}
\begin{align} \notag \\ &\begin{bmatrix} t_0 \\ t_1 \\ t_2 \end{bmatrix} =\frac{1}{3} \begin{bmatrix} 1&1&1 \\ 1&\omega&\omega^2\\ 1&(\omega^2)&(\omega^2)^2\\ \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix} =\frac{1}{3} \begin{bmatrix} 3x \\ ( 2v^2-3 v-12) \omega +v^2-3v-6 \\ -( 2v^2-3v-12) \omega - v^2+6 \end{bmatrix} \\ \end{align}
\begin{align} t_1^3&=\frac{1}{27}\left(( 2v^2-3 v-12) \omega +v^2-3v-6 \right)^3 =3\omega -3 \quad \in F_0 \\ t_2^3&=\frac{1}{27}\left( ( 2v^2-3v-12) \omega + v^2-6 \right)^3 =-3\omega -6 \quad \in F_0 \\ \end{align}
\begin{align} &t_1 \cdot t_2= -\frac{4 {{v}^{4}} {{\omega }^{2}}}{9}+\frac{4 {{v}^{3}} {{\omega }^{2}}}{3}+\frac{13 {{v}^{2}} {{\omega }^{2}}}{3} -8 v {{\omega }^{2}}-16 {{\omega }^{2}}-\frac{4 {{v}^{4}} \omega }{9} \notag \\ &+\frac{4 {{v}^{3}} \omega }{3}+\frac{13 {{v}^{2}} \omega }{3} -8 v \omega -16 \omega -\frac{{{v}^{4}}}{9}+\frac{{{v}^{3}}}{3}+\frac{4 {{v}^{2}}}{3}-2 v-4 = \ 3 \ \in F_0 \\ \notag \\ \end{align}
\begin{align} &\therefore \{ t_1^3=3\omega -3, \quad t_2^3=-3\omega-6, \quad t_1 \cdot t_2=3 \ \} \ \in F_0\\ \end{align}
Step2 二項方程式 \(B_1(x)\) と新たな添加数 \(a_1\) の生成
\begin{align}
t_1^3&=3\omega -3 \equiv A_1 \ \in \ F_0 \\
\notag \\
\therefore \ B_1(x)&=x^3-A_1=0 \qquad
\tilde{t_1}=a_1 \ \in F_0(a_1)=F_1 \\
\end{align}
\begin{align} t_2=\frac{t_1 \cdot t_2}{t_1}=\frac{t_1^2\cdot (t_1t_2)}{t_1^2\cdot t_1} =\frac{t_1^2\cdot (t_1t_2)}{t_1^3}=\frac{a_1^2 \cdot (3)}{A_1} =\frac{3a_1^2}{A_1} \end{align}
\begin{align} &A_1^{-1}=-\frac{2}{9}-\frac{\omega}{9} \\ \notag \\ &t_0=x \qquad \tilde{t_1} =a_1 \qquad \tilde{t_2} =-\frac{a_1^2(\omega+2)}{3} \\ \end{align}
Step3 ILRT(Inverse Lagrange Resolvent transformation) \begin{align} &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1} \\ \tilde{h_2} \end{bmatrix} = \begin{bmatrix} 1&1&1 \\ 1&\omega^2&(\omega^2)^2\\ 1&\omega&(\omega^2)\\ \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \\ \tilde{t_2} \end{bmatrix} = \begin{bmatrix} x+a_1-\frac{a_1^2(\omega+2)}{3} \\ x+a_1\omega^2-\frac{a_1^2\omega(\omega+2)}{3} \\ x+a_1\omega-\frac{a_1^2\omega^2(\omega+2)}{3} \end{bmatrix}\\ \end{align}
\begin{align} &g_1(x)=x+a_1-\frac{a_1^2(\omega+2)}{3} \quad \in F_1[x]=F_0(a_1)[x]\\ \end{align}
\begin{align} g_1(x)&=0 \quad \Rightarrow \quad \therefore \ v=-a_1+\frac{a_1^2(\omega+2)}{3} \\ \end{align}
\begin{align} \alpha=&\frac{{a_1} \omega -{{a}_{1}^{2}}+2 {a_1}}{3} \\ \beta=&-\frac{\left( {{a}_{1}^{2}}+2 {a_1}\right) \omega +{a_1}}{3} \\ \gamma=&\frac{\left( {{a}_{1}^{2}}+{a_1}\right) \omega +{{a}_{1}^{2}}-{a_1}}{3}\\ \end{align}