数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} h_0&=\prod_{\rho_i \in \ C_4}\rho_i(x-v)=(x-v_1)(x-v_4)(x-v_{13})(x-v_{16}) \\ h_1&=\prod_{\rho_i \in \ (C_{8}-C_4)}\rho_i(x-v)=(x-v_2)(x-v_8)(x-v_{9})(x-v_{15}) \\ \end{align} \begin{align} \notag \\ & \begin{bmatrix} t_0 \\ t_1 \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} \\ \end{align}
\begin{align} h_0&=(x-v_1)(x-v_4)(x-v_{13})(x-v_{16}) \notag \\ &=x^4+\frac{\left( 4 {{v}^{7}}+\left( 4 {a_1}+6\right) {{v}^{6}}+...+\left( 4 {a_1}+10\right) v+4 {a_1}+4\right) }{2}x^3+...\notag \\ &+\frac{\left( 4 {{v}^{7}}+\left( 4 {a_1}+6\right) {{v}^{6}}+...+\left( 4 {a_1}+10\right) v+4 {a_1}+4\right) }{2}x+1\\ h_1&=(x-v_2)(x-v_8)(x-v_9)(x-v_{15}) \notag \\ &=x^4+\frac{\bigl(-4v^7+(-4a_1-6)v^6+...+(-4a_1-10)v-2a_1-3\bigr)}{2}x^3+... \notag \\ &+\frac{\bigl( -4v^7+(-4a_1-6)v^6+...+(-4a_1-10)v-2a_1-3\bigr)}{2}x+1 \\ \notag \\ \end{align}
\begin{align} t_0&=x^4+\frac{(2a_1+1)}{4}x^3+\frac{(2a_1+7)}{4}x^2+\frac{(2a_1+1)}{4}+1 \quad \in \ F_1[x]\\ t_1&=\frac{\bigl( 8v^7+(8a_1+12)v^6+...+(8a_1+20)v+6a_1+7 \bigr) }{4}x^3 \notag \\ & +\frac{\bigl( (4a_1-2)v^7+(4a_1+14)v^6+...+(8a_1+12)v+2a_1+11 \bigr) }{4}x^2 \notag \\ & +\frac{\bigl( 8v^7+(8a_1+12)v^6+...+(8a_1+20)v+6a_1+7 \bigr) }{4}x \quad \in \ F_1(v)[x] \\ \end{align}
【step2】二項方程式 \(B_2(x)=0\) と新たな添加数 \(a_2\) の生成
\begin{align}
& \left\{
\begin{array}{l}
t_1=cd_m \cdot q_2(x) \ \in F_1(v)[x] \\
cd_m \ \in F_1(v) \\
q_2(x) \ \in F_1[x] \\
\end{array}
\right.
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
\tilde{t_1}=a_2 \cdot q_2(x) \ \in F_2[x] \\
B_2(x)=x^2-A_2=0 \\
a_2=\sqrt {A_2} \ \in F_1(a_2) \equiv F_2\\
\end{array}
\right. \notag \\
\end{align}
\begin{align} cd_m&=\frac{\bigl( 8v^7+(8a_1+12)v^6+...+(8a_1+20)v+6a_1+7 \bigr) }{4} \ \in \ F_1(v)\\ cd_m^2&=\frac{2 {a_1}+17}{8} \equiv A_2 \quad \in \ F_1 \\ &\qquad \Downarrow \notag \\ B_2(x)&\equiv x^2-A_2=0 \quad \rightarrow \quad a_2=\sqrt{A_2} \ \in \ F_2 \equiv F_1(a_2)\\ \end{align}
\begin{align} cd_m^{-1}&=-\frac{\bigl( (4a_1-34)v^7+(-28a_1-34)v^6+...+(-24a_1-68)v-22a_1-17)}{34} \\ q_2(x)&=cd_m^{-1} \cdot t_1=x^3+\frac{(2a_1-1)}{4}x^2+x \quad \in \ F_1[x]\\ &\qquad \Downarrow \notag \\ \tilde{t_1} &\equiv a_2 \cdot q_2(x)= a_2 \cdot \biggl(x^3+\frac{(2a_1-1)}{4}x^2+x\biggr) \quad \in F_2[x] \\ \end{align}
\begin{align} \tilde{h_0}&=t_0+\tilde{t_1} \equiv g_2(x) \\ \notag \\ g_2(x)&=x^4+\frac{(4a_2+2a_1+1)}{4}x^3+\frac{ \bigl( (2a_1-1)a_2+2a_1+7 \bigr) }{4}x^2 \notag \\ &+\frac{(4a_2+2a_1+1)}{4}x+1 \\ \end{align}