数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} h_0&=\prod_{\rho_i \in \ C_2}\rho_i(x-v)=(x-v_1)(x-v_{16}) \\ h_1&=\prod_{\rho_i \in \ (C_{4}-C_2)}\rho_i(x-v)=(x-v_4)(x-v_{12}) \\ \end{align} \begin{align} \notag \\ & \begin{bmatrix} t_0 \\ t_1 \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} \\ \end{align}
\begin{align} h_0&=(x-v_1)(x-v_{16}) \notag \\ &=x^2+\frac{1}{4}\biggl( 4v^3+(4a_2+2a_1+1)v^2+((2a_1-1)a_2 \notag \\ &\qquad \qquad +2a_1+3)v+4a_2+2a_1+1 \biggr)x+1 \\ h_1&=(x-v_4)(x-v_{12}) \notag \\ &=x^2-\frac{x}{4}\biggl(4v^3+(4a_2+2a_1+1)v^2+((2a_1-1)a_2+2a_1+3)v\biggr)+1 \\ \notag \\ \end{align}
\begin{align} t_0&=x^2+\frac{(4a_2+2a_1+1)x}{8}+1 \quad \in \ F_2[x] \\ t_1&=\frac{x}{8}\biggl( 8v^3+(8a_2+4a_1+2)v^2+((4a_1-2)a_2+4a_1+6)v \notag \\ &\qquad \qquad +4a_2+2a_1+1 \biggr) \quad \in \ F_2(v)[x] \\ \end{align}
【step2】二項方程式 \(B_3(x)=0\) と新たな添加数 \(a_3\) の生成
\begin{align}
& \left\{
\begin{array}{l}
t_1=cd_m \cdot q_3(x) \ \in F_2(v)[x] \\
cd_m \ \in F_2(v) \\
q_3(x)=x \ \in F_2[x] \\
\end{array}
\right.
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
\tilde{t_1}=a_3 \cdot q_3(x)=a_3x \ \in F_3[x] \\
B_3(x)=x^2-A_3=0 \\
a_3=\sqrt {A_3} \ \in F_2(a_3) \equiv F_3\\
\end{array}
\right. \notag \\
\end{align}
\begin{align} cd_m&=\frac{\biggl( 8v^3+(8a_2+4a_1+2)v^2+...+4a_2+2a_1+1 \biggr) }{8} \ \in \ F_2(v)\\ cd_m^2&=-\frac{{a_1} \left( 4 {a_2}+6\right) -6 {a_2}-17}{16} \equiv A_3 \quad \in \ F_2 \\ &\qquad \Downarrow \notag \\ B_3(x)&\equiv x^2-A_3=0 \quad \rightarrow \quad a_3=\sqrt{A_3} \ \in \ F_3 \equiv F_2(a_3)\\ &\qquad \Downarrow \notag \\ \tilde{t_1} &\equiv a_3 \cdot q_3(x)= a_3x \quad \in F_3[x] \\ \end{align}
\begin{align} \tilde{h_0}&=t_0+\tilde{t_1} \equiv g_3(x) \\ \notag \\ g_3(x)&=x^2+\biggl(a_3+\frac{a_2}{2}+\frac{a_1}{4}+\frac{1}{8}\biggr)x+1 \\ \end{align}