数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
【step1】LRT(Lagrange Resolvent transformation) \begin{align} &\left\{ \begin{array}{l} h_0=(x-v_1) \\ h_1=(x-v_{16}) \\ \end{array} \right. \\ \notag \\ & \begin{bmatrix} t_0 \\ t_1 \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} \\ \end{align}
\begin{align} h_0&=(x-v_1)=x-v \\ h_1&=(x-v_{16})=x+v+{a_3}+\frac{{a_2}}{2}+\frac{{a_1}}{4}+\frac{1}{8} \\ \notag \\ \end{align}
\begin{align} t_0&=x+\frac{8a_3+4a_2+2a_1+1}{16} \quad \in \ F_3[x]\\ t_1&=-v-\frac{8a_3+4a_2+2a_1+1}{16} \quad \in \ F_3(v) \\ \end{align}
【step2】二項方程式 \(B_4(x)=0\) と新たな添加数 \(a_4\) の生成
\begin{align}
t_1 \ \in F_3(v)
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
\tilde{t_1}=a_4\ \in F_4 \\
B_4(x)=x^2-A_4=0 \\
a_4=\sqrt {A_4} \ \in F_3(a_4) \equiv F_4\\
\end{array}
\right. \notag \\
\end{align}
\begin{align} t_1&= -v-\frac{8a_3+4a_2+2a_1+1}{16} \quad \in F_3(v)\\ t_1^2&=\frac{{a_1} \left( 4 {a_3}-2\right) +\left( 8 {a_2}+2\right) {a_3}+4 {a_2}-17}{32} \equiv A_4 \quad \in \ F_3 \\ &\qquad \Downarrow \notag \\ B_4(x)&\equiv x^2-A_4=0 \quad \rightarrow \quad a_4=\sqrt{A_4} \ \in \ F_4 \equiv F_3(a_4)\\ &\qquad \Downarrow \notag \\ \tilde{t_1} &\equiv a_4 \quad \in F_4 \\ \end{align}
【step3】ILRT(Inverse Lagrange Resolvent transformation) \begin{align} &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1 } \end{bmatrix} = \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \end{bmatrix} \quad \Rightarrow \quad \left\{ \begin{array}{l} g_3(x)=\tilde{h_0} \cdot \tilde{h_1} \\ g_4(x) \equiv \tilde{h_0} \ \in \ F_4[x] \end{array} \right. \notag \\ \end{align}
\begin{align} &\tilde{h_0}=t_0+\tilde{t_1} \equiv g_4(x) \\ &g_4(x)=x+{a_4}+\frac{{a_3}}{2}+\frac{{a_2}}{4}+\frac{{a_1}}{8}+\frac{1}{16} \\ \notag \\ &\therefore \ v=-\biggl[{a_4}+\frac{{a_3}}{2}+\frac{{a_2}}{4}+\frac{{a_1}}{8}+\frac{1}{16}\biggr] \quad \in F_4 \\ \end{align}