数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} V(x)&=x^6+108=(x^3-12\omega-6)(x^3+12\omega+6) \\ \notag \\ \therefore \ g_0(x) &\equiv x^3-12\omega-6 \\ \end{align}
\begin{align} &\alpha =-\frac{v( \omega +2)}{3}, \quad \beta =\frac{v(2 \omega +1)}{3}, \quad \gamma =-\frac{v( \omega -1)}{3} \\ \notag \\ &v=\alpha+2\beta+3\gamma \\ &\qquad \Downarrow \notag \\ \end{align} \begin{align} &\left\{ \begin{array}{l} \sigma_{1}(v)=v_{1}=v & &\sigma_{2}(v)=v_{2}=v(\omega+1) & &\sigma_{3}(v)=v_{3}=-v\omega \\ \sigma_{4}(v)=v_{4}=-v(\omega+1) & &\sigma_{5}(v)=v_{5}=v\omega & &\sigma_{6}(v)=v_{6}=-v \\ \end{array} \right.\\ \end{align} \begin{align} &\qquad \Downarrow \notag \\ & g_0(v_1)=g_0(v_4)=g_0(v_5)=0 \qquad g_0(v_2)=g_0(v_3)=g_0(v_6)=-24\omega-12 \\ &\qquad \Downarrow \notag \\ \end{align} \begin{align} &\rho_{1}(v)=v_1=v & &\rho_{4}(v)=v_4=-v(\omega+1) & &\rho_{5}(v)=v_5=v\omega & \end{align}
Step1 LRT(Lagrange Resolvent transformation)
\begin{align}
&Gal(F_1/F_0)=A_3/e \equiv C_3=\{\rho_1,\rho_4,\rho_5\} \notag \\
\notag \\
&\left\{
\begin{array}{l}
h_0=\rho_1(x-v)=(x-v_1)=x-v \\
h_1=\rho_4(x-v)=(x-v_4)=x+v(\omega+1) \\
h_2=\rho_5(x-v)=(x-v_5)=x-v\omega \\
\end{array}
\right. \\
\end{align}
\begin{align}
\notag \\
&\begin{bmatrix}
t_0 \\
t_1 \\
t_2
\end{bmatrix}
=\frac{1}{3}
\begin{bmatrix}
1&1&1 \\
1&\omega&\omega^2\\
1&(\omega^2)&(\omega^2)^2\\
\end{bmatrix}
\cdot
\begin{bmatrix}
h_0 \\
h_1 \\
h_2
\end{bmatrix}
=
\begin{bmatrix}
x\\
-v\\
0\\
\end{bmatrix} \\
\end{align}
Step2 二項方程式 \(B_2(x)\) と新たな添加数 \(a_2\) の生成
\begin{align}
&\left\{
\begin{array}{l}
t_0 \ \in \ F_0[x] \\
t_1 \ \in \ F_0(v) \\
t_2 \ \in \ F_0 \\
\end{array}
\right.
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
t_1^3=A_1=-12\omega-6 \in \ F_0 \\
B_1(x)=x^3-A_1=0 \\
a_1=\sqrt[3]{A_1} \ \in \ F_0(a_1) \equiv \ F_1 \\
\end{array}
\right. \\
\end{align}
Step3 ILRT(Inverse Lagrange Resolvent transformation)
\begin{align}
&\begin{bmatrix}
\tilde{h_0} \\
\tilde{h_1} \\
\tilde{h_2}
\end{bmatrix}
=
\begin{bmatrix}
1&1&1 \\
1&\omega^2&(\omega^2)^2\\
1&\omega&(\omega^2)\\
\end{bmatrix}
\cdot
\begin{bmatrix}
t_0 \\
\tilde{t_1} \\
\tilde{t_2}
\end{bmatrix}
=
=
\begin{bmatrix}
1&1&1 \\
1&\omega^2&(\omega^2)^2\\
1&\omega&(\omega^2)\\
\end{bmatrix}
\cdot
\begin{bmatrix}
x \\
a_1 \\
0
\end{bmatrix}
=
\begin{bmatrix}
x+a_1 \\
x+a_1\omega^2 \\
x+a_1\omega \\
\end{bmatrix} \\
\notag \\
&\therefore \quad g_1(x) \equiv \tilde{h_0} =x+a_1\ \in \ F_1[x] \\
\end{align}
\begin{align} & g_1(x)=0 \quad \rightarrow \quad v=-a_1 \notag \\ &\qquad \Downarrow \notag \\ &\therefore \ \alpha =\frac{a_1( \omega +2)}{3}, \quad \beta =-\frac{a_1(2 \omega +1)}{3}, \quad \gamma =\frac{a_1( \omega -1)}{3} \\ \end{align}
\(f_i(x)\) | \(equation\) | \(deg(g(v))\) | \(deg(g(v,\zeta))\) | \(Gal(Q(v,\zeta)/Q(\zeta)) \) |
---|---|---|---|---|
\({f_1(x)}\) | \(x^5+x^4+2x^3+4x^2+x+1\) | \(20\) | \(20\) | \(F_{20}\) |
\({f_2(x)}\) | \(x^5-5x^3+5x+6\) | \(20\) | \(10\) | \(D_{5}\) |
\({f_3(x)}\) | \(x^5-5x^3+5x-3\) | \(20\) | \(5\) | \(C_{5}\) |
\({f_4(x)}\) | \(x^5-3\) | \(20\) | \(5\) | \(C_{5}\) |
\({f_5(x)}\) | \(x^5-x^3-2x^2-2x-1\) | \(10\) | \(10\) | \(D_{5}\) |
\({f_6(x)}\) | \(x^5-10x^3+5x^2+10x+1\) | \(5\) | \(5\) | \(C_{5}\) |
\({f_7(x)}\) | \(x^5+15x+12\) | \(20\) | \(10\) | \(D_{5}\) |
\(f_i(x)\) | \(equation\) | \(deg(g(v))\) | \(deg(g(v,\omega))\) | \(Gal(Q(v,\omega)/Q(\omega)) \) |
---|---|---|---|---|
\({f_8(x)}\) | \(x^3+3x+1\) | \(6\) | \(6\) | \(S_{3}\) |
\({f_{9}(x)}\) | \(x^3-2\) | \(6\) | \(3\) | \(A_{3} \ (\cong C_3)\) |
\({f_{10}(x)}\) | \(x^3-3x+1\) | \(3\) | \(3\) | \(A_{3} \ ( \cong C_3)\) |