数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
Step1 LRT(Lagrange Resolvent transformation)
\begin{align}
&Gal(F_2/F_1)=C_5/e \cong C_5=\{ \rho_{1},\rho_{38},\rho_{53},\rho_{94},\rho_{113} \} \\
\notag \\
&\rho \equiv \rho_{113}, \quad \rho^2=\rho_{38}, \quad \rho^3=\rho_{53}, \quad \rho^4=\rho_{94}, \quad \rho^5=e=\rho_1 \\
\end{align}
\begin{align}
&\qquad \qquad \Downarrow \notag \\
&\left\{
\begin{array}{l}
h_0 \equiv (x-v)=(x-v_1)=x-v \\
h_1=\rho(h_0)=(x-v_{113})=x-\frac{47 {{v}^{4}} {{\zeta }^{3}}}{30}+\frac{4 {{v}^{2}} {{\zeta }^{3}}}{3}+...-\frac{4}{3} \\
h_2=\rho^2(h_0)=(x-v_{38})=x-\frac{29 {{v}^{4}} {{\zeta }^{3}}}{30}+\frac{2 {{v}^{2}} {{\zeta }^{3}}}{3}+...+\frac{7}{3} \\
h_3=\rho^3(h_0)=(x-v_{53})=x+\frac{29 {{v}^{4}} {{\zeta }^{3}}}{30}-\frac{2 {{v}^{2}} {{\zeta }^{3}}}{3}+...-\frac{7}{3} \\
h_4=\rho^4(h_0)=(x-v_{94})=x+\frac{47 {{v}^{4}} {{\zeta }^{3}}}{30}-\frac{4 {{v}^{2}} {{\zeta }^{3}}}{3}+...+\frac{4}{3}\\
\end{array}
\right. \\
\notag \\
\end{align}
\begin{align} \begin{bmatrix} t_0 \\ t_1 \\ t_2 \\ t_3 \\ t_4 \end{bmatrix} &=\frac{1}{5} \begin{bmatrix} 1&1&1&1&1 \\ 1&\zeta&\zeta^2&\zeta^3&\zeta^4\\ 1&(\zeta^2)&(\zeta^2)^2&(\zeta^2)^3&(\zeta^2)^4\\ 1&(\zeta^3)&(\zeta^3)^2&(\zeta^3)^3&(\zeta^3)^4\\ 1&(\zeta^4)&(\zeta^4)^2&(\zeta^4)^3&(\zeta^4)^4 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} \\ \notag \\ &\qquad \qquad Z=\zeta^4+\zeta^3+\zeta^2+\zeta+1=0 \notag \\ \end{align}
\begin{align} \left\{ \begin{array}{l} t_0=x, \quad t_2=0, \quad t_3=0 \\ t_1=\frac{1}{3}\bigl[\left( 80 {{v}^{4}}-40 {{v}^{2}}+199 {a_1} v-300\right) {{\zeta }^{3}}+...+\left( 521 {a_1}-150\right) v-100 \bigr] \\ t_4= -\frac{1}{3}\bigl[ \left( 80 {{v}^{4}}-40 {{v}^{2}}+199 {a_1} v-300\right) {{\zeta }^{3}}+...+\left( 521 {a_1}+150\right) v-100 \bigr]\\ \end{array} \right. \\ \end{align}
\begin{align} t_{1}^5&=-134208800 {{\zeta }^{3}}-134208800 {{\zeta }^{2}}-217154400=A_2 \ \in \ F_1\\ \notag \\ &\left\{ \begin{array}{l} B_2(x) \equiv x^5-A_2=0 \\ a_2 \equiv \sqrt[5] {A_2} \ \in F_2 \equiv F_1(a_2) \\ \end{array} \right. \\ \end{align}
Step2 二項方程式 \(B_2(x)=0\) と新たな添加数 \(a_2\) の生成
\begin{align}
\left\{
\begin{array}{l}
t_1 \in F_1(v) \\
t_1^5=5655 {{\zeta }^{3}}+1335 {{\zeta }^{2}}-4320 \zeta \\
\qquad +\frac{{a_1}}{2}-2160 \ \in F_1\\
\end{array}
\right.
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
B_2(x)=x^5-A_2=0 \\
a_2=\sqrt[5] {A_2} \ \in F_1(a_2) \equiv F_2\\
\tilde{t_1}=a_2\ \in F_2 \\
\end{array}
\right. \notag \\
\end{align}
\begin{align} \notag \\ A_2^{-1}&=-\frac{167761 {{v}^{5}} {{\zeta }^{3}}}{4000}+\frac{1353 {{v}^{3}} {{\zeta }^{3}}}{32}-\frac{341 v {{\zeta }^{3}}}{40}-\frac{167761 {{v}^{5}} {{\zeta }^{2}}}{4000} \notag \\ &+\frac{1353 {{v}^{3}} {{\zeta }^{2}}}{32}-\frac{341 v {{\zeta }^{2}}}{40}+\frac{51841 {{v}^{5}}}{2000}-\frac{4181 {{v}^{3}}}{160}+\frac{843 v}{160} \\ \notag \\ \tilde{ t_2}&=t_1^5 \cdot t_2 \cdot t_1^{-5}=t_1^2 \cdot (t_1^3 \cdot t_2)\cdot A_2^{-1}=a_2^2 \cdot (t_1^3 \cdot t_2) \cdot A_2^{-1} \notag \\ \tilde{t_3}&=a_2^3 \cdot (t_1^2 \cdot t_3)\cdot A_2^{-1} \\ \tilde{ t_4}&=a_2^4 \cdot (t_1 \cdot t_4) \cdot A_2^{-1} \notag \\ &\qquad \qquad \Downarrow \notag \\ \end{align}
\begin{align} \left\{ \begin{array}{l} t_0=x , \quad \tilde{t_1}=a_2 \in \ F_2=F_1(a_2) \\ \tilde{t_2}=0, \quad \tilde{t_3}=0 \\ \tilde{t_4}= -\frac{1353 {a_1} {a_2^{4}} {{\zeta }^{3}}}{10}-\frac{24 {a_2^{4}} {{\zeta }^{3}}}{5}-\frac{1353 {a_1} {a_2^{4}} {{\zeta }^{2}}}{10}-\frac{102 {a_2^{4}} {{\zeta }^{2}}}{5}-\frac{126 {a_2^{4}} \zeta }{5}+\frac{4181 {a_1} {a_2^{4}}}{50}-\frac{63 {a_2^{4}}}{5}\\ \end{array} \right. \\ \end{align}
Step3 ILRT(Inverse Lagrange Resolvent transformation)
\begin{align}
\begin{bmatrix}
\tilde{h_0}\\
\tilde{h_1} \\
\tilde{h_2} \\
\tilde{h_3} \\
\tilde{h_4}
\end{bmatrix}
&=
\begin{bmatrix}
1&1&1&1&1 \\
1&(\zeta^4)&(\zeta^4)^2&(\zeta^4)^3&(\zeta^4)^4\\
1&(\zeta^3)&(\zeta^3)^2&(\zeta^3)^3&(\zeta^3)^4\\
1&(\zeta^2)&(\zeta^2)^2&(\zeta^2)^3&(\zeta^2)^4\\
1&\zeta&\zeta^2&\zeta^3&\zeta^4
\end{bmatrix}
\cdot
\begin{bmatrix}
t_0\\
\tilde{t_1} \\
\tilde{t_2}\\
\tilde{t_3} \\
\tilde{t_4}
\end{bmatrix} \\
\notag \\
g_2(x) &\equiv \tilde{h_0}=t_0+\tilde{t_1}+\tilde{t_2}+\tilde{t_3}+\tilde{t_4} \\
\end{align}
\begin{align} \therefore \ v&=-{a_2}+\frac{1353 {a_1} {{a}_{2}^{4}} {{\zeta }^{3}}}{10}+\frac{24 {{a}_{2}^{4}} {{\zeta }^{3}}}{5}+\frac{1353 {a_1} {{a}_{2}^{4}} {{\zeta }^{2}}}{10} \notag \\ &\qquad +\frac{102 {{a}_{2}^{4}} {{\zeta }^{2}}}{5}+\frac{126 {{a}_{2}^{4}} \zeta }{5}-\frac{4181 {a_1} {{a}_{2}^{4}}}{50}+\frac{63 {{a}_{2}^{4}}}{5} \\ \end{align}
\begin{align} D_{5}&=\{\rho_i\} \quad i=[1,8,27,38,53,68,83,94,113,120] \notag \\ C_5&=\{\rho_i\} \quad i=[1,38,53,94,113] \notag \\ e&=\rho_1 \notag \\ \notag \\ &F_0 (= Q(\zeta)), \ F_1 (=Q(a_1,\zeta)), \ F_2 (= Q(a_2,a_1,\zeta) = F_0(v)) \\ \end{align}