数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術


Profile
Name: scruta \(\quad\) Daily life: mowing

Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14

\(\qquad\)


Contact

mailaddress



Copyright © 2023 scruta

【第9章】 ん!?    ガロア方程式解法の破綻か?

\( \quad \)

\(\qquad \qquad f_1(x)=x^3-2 \qquad f_2(x)=x^5-5x^3+5x+6\)

\( \quad \)

▶ Page    1,   2,   3,   4,   5 

\(\quad \)
home \(\quad \)

\(\nextSection\)
\(\nextSection\)

【9-3】破綻の例2    \(f_2(x)=x^5-5x^3+5x+6 \)

前節のなかでTrager Algorithmを使った計算が2回ありました。
前節では、この計算の説明は省略したのですが、この節では5次方程式を使って、 再度この辺の計算を説明したいと思います。少し複雑ですがTrager Algrithmの手続きがよくわかるので 計算過程を説明してみます。
まず次の方程式を考えます。

\begin{align} f(x)&=x^5-5x^3+5x+5 \\ &=(x-\alpha)(x-\beta)(x \ -\gamma)(x \ -\delta)(x \ -\epsilon) \notag \\ \notag \\ v&=1 \cdot \alpha+2 \cdot \beta+3 \cdot \gamma+4 \cdot \delta+5 \cdot \epsilon \\ \end{align}

\begin{align} &\left\{ \begin{array}{l} f(x)=(x-\alpha)q_1(x)+r_1 \\ q_1(x)=(x-\beta)q_2(x)+r_2 \\ q_2(x)=(x-\gamma)q_3(x)+r_3 \\ q_3(x)=(x-\delta)q_4(x)+r_4 \\ q_4(x)=(x-\epsilon)q_5(x)+r_5 \\ r_5=\alpha+\beta+\gamma+\delta+\epsilon\\ \end{array} \right.\\ \end{align}

\begin{align} &\left\{ \begin{array}{l} &f(\alpha)=0 \ \Rightarrow \ r_1=0 \quad &q_1(\beta)=0 \ \Rightarrow \ r_2=0 \\ &q_2(\gamma)=0 \ \Rightarrow \ r_3=0\quad &q_3(\delta)=0 \ \Rightarrow \ r_4=0 \\ &q_4(\epsilon)=0\ \Rightarrow \ r_5=0 \quad &eq(3.2) \quad \Rightarrow \quad r_6 \equiv v-(\alpha+2\beta+3\gamma+4\delta+5\epsilon)=0\\ \end{array} \right.\\ \end{align}

(3.4)より \(\{ \ r_1=0, \ r_2=0, \ r_3=0, \ r_4=0, \ r_5=0 , \ r_6=0 \ \}\) を、 未知数\(\{ \ \alpha, \ \beta, \ \gamma, \ \delta, \ \epsilon, \ v \ \}\) の 多元連立方程式と考えて、解を求めてゆくことを考えます。 この様な場合、「終結式」を使って変数の数を少なくして問題の簡素化を図ります。最終的には \(v\) の次数が120次の1変数多項式まで簡略化(?)出来ます。
更にmaximaの因数分解命令を使うと、\(V(x)\) は有理数体 \(Q\) 上で6つの20次の多項式に因数分解されます。そのうちの第一因数 \(V_1(x)\) を \(v\) の最小多項式の候補とします。

\begin{align} V(v) &= v^{120}-1500v^{118}+1085250v^{116}-504625000v^{114}+....... \\ \end{align}

\begin{align} V(v) &=\displaystyle \prod_{i=1}^{6}V_{i}(v) \\ \end{align}

\begin{align} V_1(v) &= v^{20}-250v^{18}+22025v^{16}-......+12500000v^2+3200000 \\ \end{align}

通常 \(V_1\) は有理数体 \(Q\) では既約多項式なので、\(v\) の最小多項式として方程式の解を求めてゆきます。しかし計算を進めると 前節と同様に、最終段階で逆数計算の解を求める事が出来ず、計算は頓挫してしまいます。
そこで、1の5乗根 \(\zeta\) を添加した体 \(Q(\zeta)\) で、「 \(V_1(x)\) が既約多項式かどうか?すなわち因数分解可能かどうか?」 を確かめる事にします。 \(\zeta\) の最小多項式を \([ \ Z=\zeta^4+\zeta^3+\zeta^2+\zeta+1 \ ]\) と したとき、代数計算ソフトmaximaの中には、\(Z\) が生成する代数体で、 \(V_1\) を因数分解する命令 \(factor(V_1,Z)\) と言う命令はあります。
しかし、Trager Algorithmを使って、なるべく自分で計算したいと思います。

【9-4】\(V_1(x)\) を 代数体 \(Q(\zeta)\) 上で、自力で因数分解する

\(\nextSection\)
\(V_1(x)\) の因数分解をするために、 \(V_1(x)\) の変数を(4.1)の様に \([ \ x \ \rightarrow \ x+s \cdot \zeta \ ]\) と変形します。
今回のTrager Algorithmでは \(s=1\) で計算します。そして \(V_1(x+s \cdot \zeta)\) と \(Z\) の終結式を計算します。

\begin{align} &V_1(x+s \cdot \zeta) =x^{20}+ 20\zeta x^{19}+(190\zeta^{2}-250)x^{18}+.... +406559376 \\ \notag \\ &Resultant(V_1(x+s \cdot \zeta),Z,\zeta) = R_1(x) \cdot R_2(x)\\ \notag \\ &\left\{ \begin{array}{l} R_1(x)={{x}^{40}}-10 {{x}^{39}}-445 {{x}^{38}}+3980 {{x}^{37}}+....+1591615199615670401 \\ R_2(x)={{x}^{40}}-10 {{x}^{39}}-445 {{x}^{38}}+5080 {{x}^{37}}+...+81117808067017201 \\ \end{array} \right. \\ \end{align}

終結式を求めると40次の2つの多項式 \( R_1(x)\) と \(R_2(x)\) に因数分解されます。この2つの多項式と \(V_1(x+s \cdot \zeta) \) とでユークリッド互除法の計算式 (4.4)を実行すると、最大公約式は(4.5)となります。

\begin{align} &r_{i-1}=q_{i} \cdot r_{i}+c_{i+1} \cdot r_{i+1} \quad [ \ i=1,2,3,...,11 \ ] \\ \end{align}

\begin{align} &\left\{ \begin{array}{l} r_0 \equiv R_1(x), \quad r_1 \equiv V_1(x+s \cdot \zeta) \quad \rightarrow \quad r_{12}=0 \quad \therefore \ r_{11}=Y_1 \\ r_0 \equiv R_2(x), \quad r_1 \equiv V_1(x+s \cdot \zeta) \quad \rightarrow \quad r_{12}=0 \quad \therefore \ r_{11}=Y_2 \\ \end{array} \right. \\ \notag \\ &\qquad \left\{ \begin{array}{l} GCD(R_1(x),V_1(x+s \cdot \zeta) )=Y_1(x)=x^{10}+10\zeta x^9+...-4011535\zeta+217696416\\ GCD(R_2(x),V_1(x+s \cdot \zeta) )=Y_2(x)=x^{10}+10\zeta x^9+...+4795560\zeta+83166086\\ \end{array} \right. \\ \end{align}

最大公約式 \(\{Y_1(x),Y_2(x)\}\) の変数を \([ \ x \ \rightarrow \ x-s \cdot \zeta \ ]\) に変換してやると \(V_1(x)\) が因数分解多項された(4.7)を得る事が出来ます。このうちの一つの因数 \(Y_1(x-s \cdot \zeta)\) を、我々は \(v\) の最小多項式 \(g_0(x)\) とします。

\begin{align} \therefore \ V_1(x)&=Y_1(x-s \cdot \zeta) \cdot Y_2(x-s\cdot \zeta) \\ \notag \\ g_0(x) &\equiv Y_1(x-s \cdot \zeta) \notag \\ &=x^{10}-(110\zeta^3+110\zeta^2+180)x^8+(9625\zeta^3+9625\zeta^2+15575)x^6 \notag \\ &-(341000\zeta^3+341000\zeta^2+551750)x^4+(4228125\zeta^3+4228125\zeta^2+6841250)x^2 \notag \\ &+134208800\zeta^3+134208800\zeta^2+217154400 \\ \end{align}


【9-5】\(f(x)\) を 代数体 \(Q(\zeta,v)\) 上で、自力で因数分解する

\(\nextSection\)
最小多項式 \(g_0(x)\) が確定したので、この最小多項式が生成する代数体の中で、方程式 \(f(x)\) を 因数分解します。 \(g_0(x)\) が生成する代数体は、方程式の \(v\) 最小分解体なので、\(x\)の 一次式にまで因数分解されるはずです。
\(f(x)\) を因数分解をするために、 \(f(x)\) の変数を(4.1)の様に \([ \ x \ \rightarrow \ x+s \cdot \zeta \ ]\) と変形します。
今回のTrager Algorithmでも \(s=1\) で計算します。そして \(f(x+s \cdot v)\) と \(g_0(v)\) の終結式を計算します。

\begin{align} &f(x+s \cdot v)=(x+v)^5-5(x+v)^3+5(x+v)+6 \\ \notag \\ \end{align} \begin{align} &Resultant(f(x+s \cdot v),g_0(v),v)=R_1(x) \cdot R_2(x) \cdot R_3(x) \cdot R_4(x) \cdot R_5(x) \\ \notag \\ &\left\{ \begin{array}{l} R_1(x)=x^{10}-(150\zeta^3+150\zeta^2+260)x^8+....+787597200\zeta^2+1274359536 \\ \qquad ..... \\ R_5(x)=x^{10}-(70\zeta^3+70\zeta^2+120)x^8+....+16888960\zeta^2+27326916 \\ \end{array} \right. \\ \end{align}

終結式を求めると10次の5つの多項式 \( \{ \ R_1(x),...,R_5(x) \ \}\) に因数分解されます。この5つの多項式と \(f(x+s \cdot v) \) とでユークリッド互除法の計算式 (5.4)を実行すると、最大公約式は(5.5)となります。

\begin{align} &\left\{ \begin{array}{l} r_{i-1}=q_{i} \cdot r_{i}+c_{i+1} \cdot r_{i+1} \quad [ \ i=1,...,5 \ ] \\ \qquad r_0 \equiv R_k(x), \quad r_1 \equiv f(x+s \cdot v) \quad \rightarrow \quad r_{6}=0 \quad \therefore \ r_{5}=Y_k \quad [ \ k=1,..,5 \ ] \\ \end{array} \right. \\ \notag \\ &\left\{ \begin{array}{l} GCD(R_1(x),f(x+s \cdot v))=Y_1(x)=x-\frac{2207 {{v}^{6}} {{\zeta }^{3}}}{300}+\frac{623 {{v}^{4}} {{\zeta }^{3}}}{60}+... +\frac{143 {{v}^{2}}}{60}+\frac{3 v}{2} \\ \qquad ......\\ GCD(R_5(x),f(x+s \cdot v))=Y_5(x)=x-\frac{2207 {{v}^{6}} {{\zeta }^{3}}}{300}+\frac{623 {{v}^{4}} {{\zeta }^{3}}}{60}+... +\frac{143 {{v}^{2}}}{60}+\frac{v}{2} \\ \end{array} \right. \\ \end{align}

最大公約式 \(\{Y_1(x),...,Y_5(x)\}\) の変数を \([ \ x \ \rightarrow \ x-s \cdot v \ ]\) に変換してやると、 (5.6)の様に \(f(x)\) は5個の \(x\) の一次の多項式に因数分解されます。従って、方程式 \(f(x)\)の解の \(v\) による多項式表現は、 (5.7)となります。

\begin{align} &\therefore \ f(x)=Y_1(x-s \cdot v) \cdot Y_2(x-s \cdot v) \cdot Y_3(x-s \cdot v) \cdot Y_4(x-s \cdot v) \cdot Y_5(x-s \cdot v) \\ \notag \\ &Y_i(x-s \cdot v)=0 \qquad [\ i=1,...,5 \ ] \notag \\ &\qquad \Downarrow \notag \\ &\left\{ \begin{array}{l} x_1=\frac{1}{300}\bigl((2207v^6-3115v^4+1170v^2+150v-100)ζ^3+...-715v^2-150v \bigr) \\ x_2=-\frac{1}{300}\bigl((843v^6-1190v^4+455v^2+300v-100)ζ^3+...-260v^2-150v-100 \bigr) \\ x_3=-\frac{1}{150}\bigl((1364v^6-1925v^4+715v^2)ζ^3+... -455v^2+100 \bigr) \\ x_4=-\frac{1}{300}\bigl( (843v^6-1190v^4+455v^2-300v-100)ζ^3+...-260v^2+150v-100 \bigr) \\ x_5=\frac{1}{300}\bigl( (2207v^6-3115v^4+1170v^2-150v-100)ζ^3+...-715v^2+150v \bigr) \\ \end{array} \right. \\ \end{align}


上記 \(\{ \ x_1,...,x_5 \ \}\) は、 \(\{ \ \alpha, \ \beta, \ \gamma, \ \delta, \ \epsilon \}\) の何れかでありますが、 お互い1対1対応はついておりません。そこで、次節でその対応関係を見つける計算をします。

\(\quad \)
home \(\quad \)