数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} &w = x_{1}+2 x_{2}+3 x_{3}+4x_{4}+5x_{5} \\ \end{align}
\begin{align} \notag \\ &\left\{ \begin{array}{l} \tau_1 (w)=w_1=x_1+2x_2+3x_3+4x_{4}+5x_{5} & &\tau_2 (w)=w_2=x_1+2x_2+3x_3+4x_{5}+5x_{4} \\ \tau_3 (w)=w_3=x_1+2x_2+3x_4+4x_{3}+5x_{5} & &\tau_4 (w)=w_4=x_1+2x_2+3x_4+4x_{5}+5x_{3} \\ \qquad ....... & & \\ \tau_{119} (w)=w_{119}=x_5+2x_4+3x_3+4x_{1}+5x_{2} & &\tau_{120} (w)=w_{120}=x_5+2x_4+3x_3+4x_{2}+5x_{1} \\ \end{array} \right. \\ \end{align}
\begin{align} &\tau_{1} (w)=w_{1}=x_1+2x_{2}+3x_{3}+4x_{4}+5x_{5} =v \\ \notag \\ &\therefore \ \ \alpha=x_1(v), \quad \beta=x_2(v), \quad \gamma=x_3(v), \quad \delta=x_4(v), \quad \epsilon=x_5(v) \end{align}
\begin{align} &v = \alpha+2 \beta+3 \gamma+4\delta+5\epsilon \\ \notag \\ &\left\{ \begin{array}{l} \sigma_1 (v)=v_1=\alpha+2\beta+3\gamma+4\delta+5\epsilon & &\sigma_2 (v)=v_2=\alpha+2\beta+3\gamma+4\epsilon+5\delta \\ \sigma_3 (v)=v_3=\alpha+2\beta+3\delta+4\gamma+5\epsilon & &\sigma_4 (v)=v_4=\alpha+2\beta+3\delta+4\epsilon+5\gamma \\ \qquad ....... & & \\ \sigma_{119} (v)=v_{119}=\epsilon+2\delta+3\gamma+4\alpha+5\beta & &\sigma_{120} (v)=v_{120}=\epsilon+2\delta+3\gamma+4\beta+5\alpha \\ \end{array} \right. \\ \notag \\ \end{align}
\begin{align} \notag \\ &g_0(v_i)=0 \quad i=[1,8,27,38,53,68,83,94,113,120] \\ &\qquad \Downarrow \notag \\ &\sigma_i(v)=v_i \quad \rightarrow \quad \rho_i(v) \equiv v_i \quad i=[1,8,27,38,53,68,83,94,113,120]\\ \end{align}
\begin{align} &Gal(F_0(v)/F_0) =\{\rho_{1}, \rho_{8},..., \rho_{113}, \rho_{120}\} =D_5 \quad \ Galois \ group \ of \ F_0(v)/F_0 \notag \\ \notag \\ & \ Composition \ series \ of \ Galois \ group \ D_5 \notag \\ \end{align} \begin{align} &D_5 & &\rhd & &C_5 & &\rhd & &e \\ &\updownarrow & & & &\updownarrow & & & &\updownarrow \notag \\ &F_0 & &\rightarrow & &F_1 & &\rightarrow & &F_2 \ ( \ = F_0(v)) \\ \end{align} \begin{align} & \qquad \qquad \Downarrow \notag \\ \notag \\ & Galois \ extension & & & &Galois \ Group \notag \\ \notag \\ &[1] \quad [ \ F_1:F_0 \ ]=2 & &\rightarrow & &Gal(F_1/F_0) = D_5/C_5 \cong C_2 \\ \notag \\ &[2] \quad [ \ F_2:F_1 \ ]=5 & &\rightarrow & &Gal(F_2/F_1) = C_5/e \cong C_5 \\ \end{align}
Step1 LRT(Lagrange Resolvent transformation)
\begin{align} &Gal(F_1/F_0)=D_5/C_5 \equiv C_2=\{\kappa_1,\kappa_2\} \\ &\{\kappa_1,\kappa_2\}=\bigl[ \{\rho_{1},\rho_{38},\rho_{53},\rho_{94},\rho_{113}\},\{ \rho_{8},\rho_{27},\rho_{68},\rho_{83},\rho_{120} \} \bigr] \notag \\ \notag \\ & h_0=\prod_{\rho_i \in \kappa_1 }\rho_i(x-v)=x^5-(55\zeta^3+55\zeta^2+90)x^3+...+90v^3-2225v \\ &h_1=\prod_{\rho_i \in \ \kappa_2}\rho_i(x-v)=x^5-(55\zeta^3+55\zeta^2+90)x^3+...-90v^3+2225 \notag \\ \end{align}
\begin{align} \notag \\ &\begin{bmatrix} t_0 \\ t_1 \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} = \begin{bmatrix} x^5-(55\zeta^3+55\zeta^2+90)x^3+....\\ -v^5+ (55\zeta^3+55\zeta^2+90)v^3-.... \\ \end{bmatrix} \\ \end{align}
Step2 二項方程式 \(B_1(x)\) と新たな添加数 \(a_1\) の生成
\begin{align} &\left\{ \begin{array}{l} t_0 \ \in \ F_0[x] \\ t_1 \ \in \ F_0(v) \\ \end{array} \right. \quad \Rightarrow \quad \left\{ \begin{array}{l} t_1^2=A_1=-134208800 {{\zeta }^{3}}-134208800 {{\zeta }^{2}} \\ \qquad \qquad -217154400 \in \ F_0 \\ B_1(x)=x^2-A_1=0 \\ a_1=\sqrt{A_1} \ \in \ F_0(a_1) \equiv \ F_1 \quad \Rightarrow \quad \tilde{t_1} =a_1\\ \end{array} \right. \\ \end{align}
Step3 ILRT(Inverse Lagrange Resolvent transformation)
\begin{align} \begin{bmatrix} \tilde{h_0} \\ \tilde{h_1 } \end{bmatrix} &= \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \end{bmatrix} \\ \notag \\ g_1(x) &\equiv \tilde{h_0}=x^5-(55\zeta^3+55\zeta^2+90)x^3 \notag \\ &+(1375\zeta^3+1375\zeta^2+2225)x+a_1 \ \in \ F_1[x] \\ \end{align}