ガロア理論を使って方程式を解いた事ありますか?

Home

【例題1】 EX1-RT1  EX1-RT2  EX1-RT3  EX1-RT4   ガロア群
         \(f(x)=x^3+3x+1\)           \(S_3\)
【例題2】 EX2  \(f(x)=x^3-3x+1\)           \(A_3\)
【例題3】 EX3  \(f(x)=x^5-10x^3+5x^2+10x+1\)  \( \ \ C_5\)
【例題4】 EX4  \(f(x)=x^4+4x+2\)           \(S_4\)


    【補足1】 APX1 代数体上での因数分解
    【補足2】 APX2 1の原始冪乗根 \("\omega \ and \ \zeta_5"\) の計算
    【補足3】 APX3 巡回多項式と円分方程式 \(\Phi_{17}(x)\)
    【補足4】 APX4 添加数生成時の計算のポイント
    【補足5】 APX5 \(x^3-2=0, \ x^5-3=0\) に関して
    【補足6】 APX6 拡大体 \(F_i\) での計算の注意点

【例題1】の解法手順(RT1&RT4)

EX1-RT1-1

\begin{align*} &f(x)=3x^3+3x+1 \quad \{\alpha,\beta,\gamma\}: \ roots \ of \ f(x)\\ &Primitive \ element \quad v=1\cdot\alpha+2\cdot \beta+3\cdot\gamma \end{align*}

流れ
EX1-RT1-2

\begin{align*} v_{1}=\alpha+2\beta+3\gamma \qquad v_{2}=\alpha+2\gamma+3\beta \\ v_{3}=\beta+2\alpha+3\gamma \qquad v_{4}=\beta+2\gamma+3\alpha\\ v_{5}=\gamma+2\alpha+3\beta \qquad v_{6}=\gamma+2\beta+3\alpha \end{align*} \begin{align*} V(x)=&(x-v_{1})(x-v_{2})(x-v_{3})\\ \times&(x-v_{4})(x-v_{5})(x-v_{6}) \end{align*}

流れ
EX1-RT1-3

\[V(x, \ \alpha,\beta,\gamma): symmetric \ function \ in \{\alpha,\beta,\gamma\} \] \[\qquad \qquad \Downarrow\] \[V(x, \ e_{1},e_{2},e_{3})\] \[\{e_1,e_2,e_3\}: elementary \ symmetric \ functions\]

流れ
EX1-RT1-4

\[g_{0}(x)=x^6+18x^4+81x^2+135 \]

\[ \qquad g_0(x):minimal \ polynomial \ of \ v \ on \ F_0=Q(\omega) \]

流れ
EX1-RT1-5

\begin{align*} P_{\alpha}(x)=V(x)&\cdot \big( \frac{\gamma }{x-{v_6}}+\frac{\gamma }{x-{v_5}}+\frac{\beta }{x-{v_4}}\\ &+\frac{\beta }{x-{v_3}}+\frac{\alpha }{x-{v_2}}+\frac{\alpha }{x-{v_1}}\big)\\ \end{align*} \[\alpha=\left.\frac{P_\alpha(x)}{V'(x)}\right|_{x=v} \quad The \ same \ holds \ for \ \beta\ and \ \gamma \]

流れ
EX1-RT1-6

\begin{eqnarray*} \left\{ \begin{array}{l} \alpha&=\frac{{{v}^{4}}+15 {{v}^{2}}-9 v+36}{18}\\ \beta&=-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9}\\ \gamma&=\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18}\\ \end{array} \right. \end{eqnarray*}

\begin{align*} v_{1}&=v & v_{2}&=\frac{-v^4}{6}-\frac{5v^2}{2}+\frac{v}{2}-6\\ v_{3}&=\frac{v^4}{6}+\frac{5v^2}{2}+\frac{v}{2}+6 & v_{4}&=\frac{v^4}{6}+\frac{5v^2}{2}-\frac{v}{2}+6\\ v_{5}&=-\frac{v^4}{6}-\frac{5v^2}{2}-\frac{v}{2}-6 & v_{6}&=-v \end{align*}


(覚書1:Lagrange補間式)
(覚書2:ユークリッド互除法に関連して)
流れ
EX1-RT4-1

\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,2,..,6) \\ &\qquad \qquad \Downarrow\ \\ &S_3: Galois \ group \ of \ f(x) \\ &\qquad composition \ series \ S_3 \rhd A_3 \rhd \{e\} \end{align*}

流れ
EX1-RT4-2

\[ g_{1}(x)=x^3+9x+a_{1} \in F_{1}[x] \]

\[\quad g_1(x):minimal \ polynomial \ of \ v \ on \ F_1=F_0(a_1)\\ \quad Here \ \ B_1=a_{1}^2 +135=0 \]

流れ
EX1-RT4-3

\[g_{2}(x)=x+{{a}_{2}^{2}}\, \left( -\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) +{a_2} \in F_{2}[x]\]

\[ \quad g_2(x):minimal \ polynomial \ of \ v \ on \ F_2=F_0(a_1,a_2)\\ \quad Here \quad B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \ \Omega=\omega^2+\omega+1=0 \]

流れ
EX1-RT4-4

\begin{align*} v=&\frac{{{a}_{2}^{2}} \omega }{3}-\frac{{a_1} {{a}_{2}^{2}}}{18}+\frac{{{a}_{2}^{2}}}{6}-{a_2} \\ \\ \alpha=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega -{{a}_{2}^{2}}\right) +\left( 9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +9 {{a}_{2}^{2}}-36 {a_2}}{54}\\ \beta=&\frac{{a_1} \left( 2 {{a}_{2}^{2}} \omega +{{a}_{2}^{2}}\right) -36 {a_2} \omega +9 {{a}_{2}^{2}}-18 {a_2}}{54}\\ \gamma=&-\frac{{a_1} \left( {{a}_{2}^{2}} \omega +2 {{a}_{2}^{2}}\right) +\left( -9 {{a}_{2}^{2}}-18 {a_2}\right) \omega +18 {a_2}}{54}\\ \\ Here &\quad B_1=a_{1}^2 +135=0,\\ &B_2=a_2^3-\frac{6 \omega +{a_1}+3}{2}=0, \\ &\Omega=\omega^2+\omega+1=0 \end{align*}

(覚書:冪根の実態は?)
                                      Home   

RT1-6の計算の続き

<覚書2:ユークリッドの互除法に関連して>

式(35)の導出は、少しばかり計算が複雑なので、計算の流れを書き留めておきます。
互除計算は5段階で行われます。先ず \([ \ r_0=V(x)=g_0(x), r_1=V'(x) \ ]\) と定義するところから始まります。 以降の式の展開の中に出てくる \(\{r_i,q_i,Q_i,Q_i^{-1}\}\) 等の意味は数式を追ってゆけば 理解できると思いますので敢えて説明を省きます。

\begin{align} \setCounter{54} \left\{ \begin{array}{l} r_0=V(x)=g_0(x)=x^6+18x^4+81x^2+135 \\ r_1=V'(x)=6x^5+72x^3+162x \\ \end{array} \right. \\ \end{align}

初期値 \(\{r_0,r_1\}\) を上式(55)の様に設定して、以後は下記の様に互除法を続けます。 \(r_i\) が、定数になったところで互除法を停止させます。

\begin{align} \left\{ \begin{array}{l} &r_0=q_1\cdot r_1 +r_2 & &q_1=x/6 & &r_2=6x^4+54x^2+135\\ &r_1=q_2\cdot r_2 +r_3 & &q_2=x & &r_3=18x^3+27x\\ &r_2=q_3\cdot r_3 +r_4 & &q_3=x/3 & &r_4=45x^2+135\\ &r_3=q_4\cdot r_4 +r_5 & &q_4=(2x)/5 & &r_5=-27x\\ &r_4=q_5\cdot r_5 +r_6 & &q_5=-(5x)/3 & &r_6=135\\ \end{array} \right. \\ \end{align}


上記の互除法関連の式は、以下の様に定義された行列を使って記述すると、明確になります。

\begin{align} R_0&=\begin{pmatrix}r_0\\r_1\end{pmatrix} & R_1&=\begin{pmatrix}r_1\\r_2\end{pmatrix} & R_2&=\begin{pmatrix}r_2\\r_3\end{pmatrix} \notag \\ R_3&=\begin{pmatrix}r_3\\r_4\end{pmatrix} & R_4&=\begin{pmatrix}r_4\\r_5\end{pmatrix} & R_5&=\begin{pmatrix}r_5\\r_6\end{pmatrix} \notag \\ \end{align} \begin{align} &Q_k=\begin{pmatrix}{q_k} & 1\\ 1 & 0\end{pmatrix} \quad Q_k^{-1}=\begin{pmatrix}0 & 1\\ 1 & -{q_k}\end{pmatrix} \quad k=1,2,3,4,5 \notag \\ \end{align}

特に注意していただきたいのは \(Q_i^{-1}\) です。この行列を使うと以下の式が成り立ちます。

\begin{align} &\begin{pmatrix}r_{k-1}\\r_k\end{pmatrix}=\begin{pmatrix}{q_k} & 1\\ 1 & 0\end{pmatrix} \cdot \begin{pmatrix}r_k\\r_{k+1}\end{pmatrix} \quad \Rightarrow \quad R_{k-1}=Q_k\cdot R_k\\ &\begin{pmatrix}r_{k}\\r_{k+1}\end{pmatrix}=\begin{pmatrix}0 & 1\\ 1 & -{q_k}\end{pmatrix} \cdot \begin{pmatrix}r_{k-1}\\r_{k}\end{pmatrix} \quad \Rightarrow \quad R_{k}=Q_k^{-1}\cdot R_{k-1}\\ \end{align}


上式を使うと下記の式が成り立つことが判ります。

\begin{align} & R_0=Q_1 \cdot R_1=Q_1 \cdot Q_2 \cdot R_2= ... \notag \\ &\qquad ....\quad =Q_1 \cdot Q_2 \cdot Q_3 \cdot Q_4 \cdot Q_5 \cdot R_5 \\ \notag \\ &R_5=Q_5^{-1} \cdot R_4=Q_5^{-1} \cdot Q_4^{-1} \cdot R_3=...\notag \\ &\qquad .....\quad =Q_5^{-1} \cdot Q_4^{-1} \cdot Q_3^{-1} \cdot Q_2^{-1} \cdot Q_1^{-1} \cdot R_0\\ \end{align}


\(\{Q_{15},Q_{15}^{-1}\}\) という行列を下記のように定義し、式を整理してみます。更に、\(\{Q_{15},Q_{15}^{-1}\}\) の 成分も式(56)を使って表示すると以下の様になります。

\begin{align} &\left\{ \begin{array}{l} Q_{15}\equiv Q_1 \cdot Q_2 \cdot Q_3 \cdot Q_4 \cdot Q_5\\ Q_{15}^{-1} \equiv Q_5^{-1} \cdot Q_4^{-1} \cdot Q_3^{-1} \cdot Q_2^{-1} \cdot Q_1^{-1}\\ \end{array} \right. \\ \notag \\ &Q_{15} \equiv \begin{pmatrix}{a} & {b}\\ {c} & {d} \end{pmatrix} \qquad Q_{15}^{-1} \equiv \begin{pmatrix}{ia} & {ib}\\ {ic} & {id} \end{pmatrix} \\ \notag \\ &\left\{ \begin{array}{l} a={q_1} \left( {q_2} \left( {q_3} \left( {q_4} {q_5}+1\right) +{q_5}\right) +{q_4} {q_5}+1\right) \\ \qquad +{q_3} \left( {q_4} {q_5}+1\right) +{q_5}\\ b={q_1} \left( {q_2} \left( {q_3} {q_4}+1\right) +{q_4}\right) +{q_3} {q_4}+1 \\ c={q_2} \left( {q_3} \left( {q_4} {q_5}+1\right) +{q_5}\right) +{q_4} {q_5}+1 \\ d={q_2} \left( {q_3} {q_4}+1\right) +{q_4} \\ \end{array} \right. \\ \notag \\ &\left\{ \begin{array}{l} ia=-\left( {q_2} {q_3}+1\right) {q_4}-{q_2} \\ ib=-\left( -\left( {q_1} {q_2}+1\right) {q_3}-{q_1}\right) {q_4}+{q_1} {q_2}+1 \\ ic=-\left( -\left( {q_2} {q_3}+1\right) {q_4}-{q_2}\right) {q_5}+{q_2} {q_3}+1 \\ id=-\left( -\left( -\left( {q_1} {q_2}+1\right) {q_3}-{q_1}\right) {q_4}+{q_1} {q_2}+1\right) {q_5}\\ \qquad -\left( {q_1} {q_2}+1\right) {q_3}-{q_1} \\ \end{array} \right. \\ \end{align}


少し長くなりましたが、結論としては、式(60)は式(65)の様に書けて、、\(Q_{15}^{-1}\) の成分である式(64)の \(q_i\) に、 式(56)の中の \(q_i\) の実際の値を代入すると、式(66)の様になります。

\begin{align} & R_5=Q_{15}^{-1} \cdot R_0 \quad \Rightarrow \quad \begin{pmatrix}r_5\\r_6\end{pmatrix}=Q_{15}^{-1} \cdot \begin{pmatrix}r_0\\r_1\end{pmatrix}\\ \notag \\ &\qquad \qquad \Downarrow \notag \\ \notag \\ &\begin{pmatrix}r_5\\r_6\end{pmatrix}=\begin{pmatrix} -27x \\ 135 \end{pmatrix}=\begin{pmatrix}-\frac{2 {{x}^{3}}+21 x}{15} & \frac{2 {{x}^{4}}+33 {{x}^{2}}+90}{90}\\ -\frac{2 {{x}^{4}}+18 {{x}^{2}}-9}{9} & \frac{2 {{x}^{5}}+30 {{x}^{3}}+63 x}{54}\end{pmatrix} \cdot \begin{pmatrix}r_0\\r_1\end{pmatrix} \\ \notag \\ &\therefore \ r_6=135= -\frac{2 {{x}^{4}}+18 {{x}^{2}}-9}{9}\cdot r_0+\frac{2 {{x}^{5}}+30 {{x}^{3}}+63 x}{54}\cdot r_1\\ \end{align}


式(67)の両辺を \(135\) で割り、\([ \ r_0=g_0(x) \ (=V(x)) \ , r_1=V'(x) \ ]\) であるので、式(67)を書き直すと式(69)が得られます。 式(69)と式(35)が同じである事が判ります。

\begin{align} & -\frac{2 {{x}^{4}}+18 {{x}^{2}}-9}{9\cdot 135}\cdot r_0+\frac{2 {{x}^{5}}+30 {{x}^{3}}+63 x}{54 \cdot 135}\cdot r_1=1\\ \notag \\ &\qquad \qquad \Downarrow \notag \\ \notag \\ &\biggl[\frac{2 {{x}^{5}}+30 {{x}^{3}}+63 x}{7290}\biggr]\cdot V'(x)+\biggl[-\frac{2 {{x}^{4}}+18 {{x}^{2}}-9}{1215}\biggr]\cdot g_0(x)=1\\ \end{align}


以上です。

EX1-RT4-1に続く   又は    Homeに戻る


Profile
  Name:scruta   Daily life:mowing             

Revision history
  1st upload: 2023/06/17
  revision2 : 2023/07/27


maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。

   download pageへ

Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)
  mailaddress