数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} V(x) &= x^{120}+360x^{119}+64740x^{118}+....=\displaystyle \prod_{i=1}^{6}V_{i}(x) \\ \end{align}
\begin{align} g_0(x) \equiv V_1(x) \\ \end{align}
\begin{align} \notag \\ V_{1}(x)&={{x}^{20}}+60 {{x}^{19}}+1790 {{x}^{18}}+35100 {{x}^{17}}+505261 {{x}^{16}}+5652840 {{x}^{15}}+50799180 {{x}^{14}}+373971600 {{x}^{13}} \notag \\ &+2281089966 {{x}^{12}}+11590327440 {{x}^{11}}+49084357780 {{x}^{10}}+172620188400 {{x}^{9}}+500267581306 {{x}^{8}} \notag \\ &+1181164237800 {{x}^{7}}+2242276888380{{x}^{6}}+3401909638560 {{x}^{5}}+4254933143241 {{x}^{4}} \notag \\ &+4933817387460 {{x}^{3}}+6084439227750 {{x}^{2}}+7164705190500 x+5919446204113 \notag \\ \end{align}
\begin{align} f_{g_0} &:factor(f(x),g_0(v)); \\ \notag \\ \Rightarrow \quad f_{g_0}&=(x-x_1(v))(x-x_2(v))(x-x_3(v))(x-x_4(v))(x-x_5(v)) \\ \end{align}
\begin{align} \notag \\ x_1&=x_1(v) \notag \\ &=\frac{1}{1805610907325788018215199866227491256974007107113418338878394352169956056029101346198715864} \notag \\ &\times \bigl(20399914128957102114355730051252429667468197886785684817206258694119405575139320v^{19}+.... \bigr. \notag \\ &+\bigl. 16081798561393987072650538574298238544699323139325350416481161239277565867115418404308931185 \bigr) \\ \end{align}
\begin{align} &w = x_{1}+2 x_{2}+3 x_{3}+4x_{4}+5x_{5} \\ \end{align}
\begin{align} \notag \\ &\left\{ \begin{array}{l} \tau_1 (w)=w_1=x_1+2x_2+3x_3+4x_{4}+5x_{5} & &\tau_2 (w)=w_2=x_1+2x_2+3x_3+4x_{5}+5x_{4} \\ \tau_3 (w)=w_3=x_1+2x_2+3x_4+4x_{3}+5x_{5} & &\tau_4 (w)=w_4=x_1+2x_2+3x_4+4x_{5}+5x_{3} \\ \qquad ....... & & \\ \tau_{119} (w)=w_{119}=x_5+2x_4+3x_3+4x_{1}+5x_{2} & &\tau_{120} (w)=w_{120}=x_5+2x_4+3x_3+4x_{2}+5x_{1} \\ \end{array} \right. \\ \end{align}
\begin{align} &\tau_{46} (w)=w_{46}=x_2+2x_5+3x_3+4x_{4}+5x_{1} =v \\ \notag \\ &\therefore \ \ \alpha=x_2(v), \quad \beta=x_5(v), \quad \gamma=x_3(v), \quad \delta=x_4(v), \quad \epsilon=x_1(v) \end{align}
\begin{align} \alpha&=\frac{1}{28741663893023098374894074591802026018471908286940284736663131550284264654482411768768824} \notag \\ &\times \bigl( 210567501608336257455406877608503070848764997115834429441727871265227830902505v^{19}+........ \bigr. \notag \\ &+\bigl. 57442210272809374169345337580868722435898720939368040111653691808072392787022194552213299 \bigr)\notag \\ \notag \\ \beta&=\frac{-1}{857252457835009000213110196109220524468524761248558374280911860562745030594448} \notag \\ &\times \bigl( 3489672752300150933392195695645112172288494139509663115078892274970v^{19}+........ \bigr. \notag \\ &+\bigl. 3160686259198568119139434052803948615255814775832360709381422206175471892235787 \bigr)\notag \\ \notag \\ \gamma&=\frac{-1}{13214374102432605525586821997382112143731339298639171446156053662313051022867808487112} \notag \\ &\times \bigl( 33551790541675810392282267393932986968662189984953840556354972077255294275v^{19}+........ \bigr. \notag \\ &+\bigl. 83050394964553626522006732647984223980120065803477113655047195713571787342880161878127 \bigr)\notag \\ \notag \\ \delta&=\frac{-1}{6634428894032683488687127171128885141617384968585523393306641160158162726923810672} \notag \\ &\times \bigl( 79709193917302725524707317987542422011469313081618774778762485686856770v^{19}+........ \bigr. \notag \\ &+\bigl. 96219092449220493069543091774396449857033300915454544410229243200192229204492103293 \bigr)\notag \\ \notag \\ \epsilon&=\frac{1}{1805610907325788018215199866227491256974007107113418338878394352169956056029101346198715864} \notag \\ &\times \bigl( 20399914128957102114355730051252429667468197886785684817206258694119405575139320v^{19}+........ \bigr. \notag \\ &+\bigl. 16081798561393987072650538574298238544699323139325350416481161239277565867115418404308931185 \bigr)\notag \\ \end{align}
\begin{align} &v = \alpha+2 \beta+3 \gamma+4\delta+5\epsilon \\ \notag \\ &\left\{ \begin{array}{l} \sigma_1 (v)=v_1=\alpha+2\beta+3\gamma+4\delta+5\epsilon & &\sigma_2 (v)=v_2=\alpha+2\beta+3\gamma+4\epsilon+5\delta \\ \sigma_3 (v)=v_3=\alpha+2\beta+3\delta+4\gamma+5\epsilon & &\sigma_4 (v)=v_4=\alpha+2\beta+3\delta+4\epsilon+5\gamma \\ \qquad ....... & & \\ \sigma_{119} (v)=v_{119}=\epsilon+2\delta+3\gamma+4\alpha+5\beta & &\sigma_{120} (v)=v_{120}=\epsilon+2\delta+3\gamma+4\beta+5\alpha \\ \end{array} \right. \\ \notag \\ \end{align}
\begin{align} \sigma_i(v)&=v_i \quad i=[1,2,3,4,5,.........117,118,119,120] \\ \end{align}
\begin{align} \notag \\ g_0(v_i)&=0 \quad i=[1,8,18,23,30,33,40,43,52,59,61,70,73,80,90,95,99,108,110,117] \\ \end{align}
\begin{align} &Galois \ Group \quad Gal(F_0(v)/F_0) \equiv F_{20}:Frobenius Group \notag \\ \notag \\ \end{align}
\begin{align} &F_{20}=\{\rho_i\} \quad i=[1,8,18,23,30,33,40,43,52,59, \notag \\ &\qquad \qquad \qquad \qquad 61,70,73,80,90,95,99,108,110,117] \\ \notag \\ &\rho_i(v) \equiv \sigma_i(v)=v_i \\ \end{align}