数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
Step1 LRT(Lagrange Resolvent transformation)
\begin{align}
Gal(F_2/F_1)&=D_5/C_5 \cong C_2=\{\kappa_1,\kappa_2\} \\
\notag \\
&\left\{
\begin{array}{l}
\kappa_1=\{\rho_{1},\rho_{43},\rho_{52},\rho_{90},\rho_{117}\} \cong C_5 \\
\kappa_2=\{\rho_{8},\rho_{30},\rho_{61},\rho_{95},\rho_{108}\} \\
\end{array}
\right. \\
\notag \\
\end{align}
\begin{align} &\left\{ \begin{array}{l} h_0&=\displaystyle \prod_{\rho_i \ \in \ \kappa_1 }(x-\rho_i(v)) =(x-v_{1})(x-v_{43})(x-v_{52})(x-v_{90})(x-v_{117}) \\ h_1&=\displaystyle \prod_{\rho_i \ \in \ \kappa_2}(x-\rho_i(v)) =(x-v_{8})(x-v_{30})(x-v_{61})(x-v_{95})(x-v_{108}) \\ \end{array} \right. \\ \end{align}
\begin{align} \notag \\ &\begin{bmatrix} t_0 \\ t_1 \\ \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1\\ \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \\ \end{bmatrix} \end{align}
\begin{align} &\left\{ \begin{array}{l} h_0=x^{5}+15^{4}+110x^{3}+ca_2x^{2}+ca_{1}x+ca_{0} \\ h_1=x^{5}+15^{4}+110x^{3}+cb_2x^{2}+cb_{1}x+cb_{0} \\ \end{array} \right. \\ \end{align}
\begin{align} t_0&=x^5+15x^4+110x^3+\bigl(\frac{a_1}{2}+450 \bigr)x^2+\bigl(3a_1+1009 \bigr)x+\frac{29a_1}{2}-195 \\ \notag \\ t_1&=cd_2x^2+cd_1x+cd_0 \quad \in \ F_0(v)[x] \qquad \bigl[ \ cd_i=\frac{1}{2}(ca_i-cb_i) \quad i=(2,1,0) \ \bigr] \\ \end{align}
【step2】二項方程式 \(B_1(x)=0\) と新たな添加数 \(a_1\) の生成
\begin{align}
&\left\{
\begin{array}{l}
t_1=cd_m \cdot q_1(x) \ \in F_1(v)[x]\\
\\
cd_m \ \in F_1(v) \\
q_1(x) \ \in F_1[x]\\
\end{array}
\right.
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
\tilde{t_1}=a_1 \cdot q_1(x) \ \in F_2[x] \\
\\
B_1(x)=x^2-A_1=0 \\
a_1=\sqrt {A_1} \ \in F_0(a_1) \equiv F_2\\
\end{array}
\right. \notag \\
\end{align}
\begin{align} dc_m&=\biggl[-\frac{5856606375 }{3587124922224482}a_1v^9-\frac{301046879875 {{v}^{9}}}{1793562461112241}+...-\frac{1122878979268800}{9390379377551} \biggr] \notag \\ \notag \\ dc_m^{-1}&=\biggl[ \frac{1479555083}{746121983822692256}a_1v^9+\frac{19069802845 {{v}^{9}}}{129136497200081352}+....+\frac{11758409218607}{112684552530612}\biggr] \notag \\ \notag \\ q_2&=dc_m^{-1} \cdot t_1 ={{x}^{2}}+\biggl(\frac{a_1}{20}+11 \biggr) x+\frac{43 {a_1}}{200}+\frac{251}{10} \quad \in F_1[x] \\ \notag \\ \end{align}
\begin{align} cd_m^2&=\frac{135 {a_1}-11700}{2} \equiv A_2 \ \in \ F_1 \\ \notag \\ & \left\{ \begin{array}{l} B_2 \equiv a_2^2-\frac{135 {a_1}-11700}{2}=0 \\ a_2 \equiv \sqrt{A_1} \quad \in F_2 \equiv F_1(a_2) \\ \end{array} \right. \\ \end{align}
\begin{align} &cd_m \ \in \ F_1(v) & &\Rightarrow & &a_1 \ \in \ F_2 \\ &t_1=cd_m \cdot q_1(x) \ \in F_1(v)[x] & &\Rightarrow & &\tilde{t_1}=a_1 \cdot q_1(x) \ \in F_2[x] \\ \end{align}
\begin{align} \notag \\ \tilde{t_1}& \equiv a_2 \biggl( {{x}^{2}}+\frac{{a_1} x}{20}+11 x+\frac{43 {a_1}}{200}+\frac{251}{10} \biggr) \ \in F_2[x] \\ \notag \\ \end{align}