\begin{align} \setCounter{0} &f(x)=(x-\alpha_1)(x-\alpha_2)....(x-\alpha_n) \notag \\ &g(x)=(x-\beta_1)(x-\beta_2)....(x-\beta_m) \notag \\ &Res(f(x),g(x),x)=\prod_{i=1}^{n}g(\alpha_i)=(-1)^{nm}\prod_{j=1}^{m}f(\beta_j) =\prod_{i=1}^{n}\prod_{j=1}^{m}(\alpha_i-\beta_j)\\ \end{align}
\begin{align} Res(f(x),g(x),x)=\prod_{i=1}^{n}\prod_{j=1}^{m}(\alpha_i-\beta_j) \\ \end{align}
\begin{align} Res(f(x),g(x),x)&=(-1)^{nm}\prod_{j=1}^{m}f(\beta_j) \\ &= \bbox[#FFC0CB]{ (-1)^{nm}f(\beta_1) \cdot f(\beta_2) ... f(\beta_m) } \notag \\ &=(-1)^{nm}(\beta_1-\alpha_1)(\beta_1-\alpha_2)...(\beta_1-\alpha_n) \notag \\ &\times(\beta_2-\alpha_1)(\beta_2-\alpha_2)...(\beta_2-\alpha_n) \notag \\ &\qquad \qquad ... \notag \\ &\times(\beta_m-\alpha_1)(\beta_m-\alpha_2)...(\beta_m-\alpha_n) \notag \\ &=\prod_{i=1}^{n}\prod_{j=1}^{m}(\alpha_i-\beta_j) \notag \\ \end{align}
\begin{align} f(x+v)&=(x+v-\alpha)(x+v-\beta)(x+v-\gamma) \notag \\ \notag \\ \therefore \quad Res( f(x+ &v),g(v),v)= \bbox[#FFC0CB]{ (-1)^{3 \cdot 3} \times f(x+v_1) \cdot f(x+v_4) \cdot f(x+v_5) } \notag \\ =(-1)&\left\{\bbox[#FFFF00]{(x+v_1-\alpha)}\bbox[#7FFF00]{(x+v_1-\beta)} \bbox[#00FFFF]{(x+v_1-\gamma)} \right \} \notag \\ \times &\left\{ (x+v_4-\alpha)(x+v_4-\beta)(x+v_4-\gamma) \right \} \notag \\ \times &\left\{ (x+v_5-\alpha)(x+v_5-\beta)(x+v_5-\gamma) \right \} \\ \end{align}
\begin{align} Y_1=\bbox[#FFFF00]{(x+v_1-\alpha)}\quad Y_2=\bbox[#7FFF00]{(x+v_1-\beta)} \quad Y_3=\bbox[#00FFFF]{(x+v_1-\gamma) } \\ \end{align}
\( i \backslash j \) | \(\sigma_i(v_1)\) | \(\sigma_i(v_4)\) | \(\sigma_i(v_5)\) |
---|---|---|---|
\(\sigma_1\) | \(v_1\) | \(v_4\) | \(v_5\) |
\(\sigma_4\) | \(v_4\) | \(v_5\) | \(v_1\) |
\(\sigma_5\) | \(v_5\) | \(v_1\) | \(v_4\) |
\( i \backslash j \) | \(\sigma_i(\alpha)\) | \(\sigma_i(\beta)\) | \(\sigma_i(\gamma)\) |
---|---|---|---|
\(\sigma_1\) | \(\alpha\) | \(\beta\) | \(\gamma\) |
\(\sigma_4\) | \(\beta\) | \(\gamma \) | \(\alpha\) |
\(\sigma_5\) | \(\gamma\) | \(\alpha\) | \(\beta\) |
\( i \backslash j \) | \(\sigma_i(Y_1)\) | \(\sigma_i(Y_2)\) | \(\sigma_i(Y_3)\) |
---|---|---|---|
\(\sigma_1\) | \(x+v_1-\alpha\) | \(x+v_1-\beta\) | \(x+v_1-\gamma\) |
\(\sigma_4\) | \(x+v_4-\beta\) | \(x+v_4-\gamma\) | \(x+v_4-\alpha\) |
\(\sigma_5\) | \(x+v_5-\gamma\) | \(x+v_5-\alpha\) | \(x+v_5-\beta\) |
\begin{align} &Res(f(x+v),g(v),v)=(-1)^{3 \cdot 3} \times f(x+v_1) \cdot f(x+v_4) \cdot f(x+v_5) \notag \\ \notag \\ &=(-1)\left\{\bbox[#FFFF00]{ (x+v_1-\alpha) }\bbox[#7FFF00]{(x+v_1-\beta)}\bbox[#00FFFF]{(x+v_1-\gamma)} \right \} \notag \\ &\qquad \times \left\{\bbox[#00FFFF]{ (x+v_4-\alpha)}\bbox[#FFFF00]{ (x+v_4-\beta)}\bbox[#7FFF00]{(x+v_4-\gamma)} \right \} \notag \\ &\qquad \times \left\{\bbox[#7FFF00]{(x+v_5-\alpha)}\bbox[#00FFFF]{(x+v_5-\beta)}\bbox[#FFFF00]{ (x+v_5-\gamma)} \right \} \\ \notag \\ &\left\{ \begin{array}{l} \bbox[#FFFF00]{ H_1=(x+v_1-\alpha)(x+v_4-\beta)(x+v_5-\gamma)}\\ \bbox[#7FFF00]{ H_2=(x+v_1-\beta)(x+v_4-\gamma)(x+v_5-\alpha)}\\ \bbox[#00FFFF]{ H_3=(x+v_1-\gamma)(x+v_4-\alpha)(x+v_5-\beta)} \end{array} \right. \\ \notag \\ & \therefore \qquad Res(f(x+v),g(v),v)=(-1) \cdot H_1 \cdot H_2 \cdot H_3\\ \end{align}
\begin{align} H_2&=(x+v_1-\beta)(x+v_4-\gamma)(x+v_5-\alpha) \\ \notag \\ &\left\{ \begin{array}{l} \sigma_1(H2)=(x+v_1-\beta)(x+v_4-\gamma)(x+v_5-\alpha)=H_2 \\ \sigma_4(H2)=(x+v_4-\gamma)(x+v_5-\alpha)(x+v_1-\beta)=H_2 \\ \sigma_5(H2)=(x+v_5-\alpha)(x+v_1-\beta)(x+v_4-\gamma)=H_2 \end{array} \right. \\ \notag \\ \therefore \quad &\left\{ \begin{array}{l} H_1=\sigma_1(H_1)=\sigma_4(H_1)=\sigma_5(H1) \\ H_2=\sigma_1(H_2)=\sigma_4(H_2)=\sigma_5(H2) \\ H_3=\sigma_1(H_3)=\sigma_4(H_3)=\sigma_5(H3) \end{array} \right. \\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)