\begin{align} \setCounter{0} &\rho_1=\{\sigma_{1},\sigma_{8},\sigma_{17},\sigma_{24}\}=\{V_4\} \quad \rho_2=\{\sigma_{4},\sigma_{12},\sigma_{13},\sigma_{21}\} \quad \rho_3=\{\sigma_{5},\sigma_{9},\sigma_{10},\sigma_{20}\} \\ \end{align}
\begin{align} &\rho_1(v)=\{v_{1},v_{8},v_{17},v_{24}\} \quad \rho_2(v)=\{v_{4},v_{12},v_{13},v_{21}\} \quad \rho_3(v)=\{v_{5},v_{9},v_{10},v_{20}\} \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} h_0=\left( x-{v_1}\right) \, \left( x-{v_8}\right) \, \left( x-{v_{17}}\right) \, \left( x-{v_{24}}\right) \\ h_1=\left( x-{v_4}\right) \, \left( x-{v_{12}}\right) \, \left( x-{v_{13}}\right) \, \left( x-{v_{21}}\right) \\ h_2=\left( x-{v_5}\right) \, \left( x-{v_9}\right) \, \left( x-{v_{16}}\right) \, \left( x-{v_{20}}\right) \\ \end{array} \right. \\ \notag \\ &\left\{ \begin{array}{l} h_0=x^4+a_3x^3+a_2x^2+a_1x+a_0 \\ \quad a_3=-{v_{24}}-{v_{17}}-{v_8}-{v_1} \\ \quad a_2={v_{17}} {v_{24}}+{v_8} {v_{24}}+{v_1} {v_{24}}+{v_8} {v_{17}}+{v_1} {v_{17}}+{v_1} {v_8} \\ \quad a_1=-{v_8} {v_{17}} {v_{24}}-{v_1} {v_{17}} {v_{24}}-{v_1} {v_8} {v_{24}}-{v_1} {v_8} {v_{17}} \\ \quad a_0={v_1} {v_8} {v_{17}} {v_{24}} \\ \end{array} \right. \\ \notag \\ &\left\{ \begin{array}{l} h_1=x^4+b_3x^3+b_2x^2+b_1x+b_0 \\ \quad b_3=-{v_{21}}-{v_{13}}-{v_{12}}-{v_4}\\ \quad b_2={v_{13}} {v_{21}}+{v_{12}} {v_{21}}+{v_4} {v_{21}}+{v_{12}} {v_{13}}+{v_4} {v_{13}}+{v_4} {v_{12}}\\ \quad b_1=-{v_{12}} {v_{13}} {v_{21}}-{v_4} {v_{13}} {v_{21}}-{v_4} {v_{12}} {v_{21}}-{v_4} {v_{12}} {v_{13}}\\ \quad b_0= {v_4} {v_{12}} {v_{13}} {v_{21}} \end{array} \right. \\ \notag \\ &\left\{ \begin{array}{l} h_2=x^4+c_3x^3+c_2x^2+c_1x+c_0 \\ \quad c_3=-{v_{20}}-{v_{16}}-{v_9}-{v_5}\\ \quad c_2={v_{16}} {v_{20}}+{v_9} {v_{20}}+{v_5} {v_{20}}+{v_9} {v_{16}}+{v_5} {v_{16}}+{v_5} {v_9}\\ \quad c_1=-{v_9} {v_{16}} {v_{20}}-{v_5} {v_{16}} {v_{20}}-{v_5} {v_9} {v_{20}}-{v_5} {v_9} {v_{16}}\\ \quad c_0= {v_5} {v_9} {v_{16}} {v_{20}}\\ \end{array} \right. \\ \end{align}
\( i \backslash j \) | \(v_1\) | \(v_8\) | \(v_{17}\) | \(v_{24}\) | \(v_4\) | \(v_{12}\) | \(v_{13}\) | \(v_{21}\) | \(v_5\) | \(v_9\) | \(v_{16}\) | \(v_{20}\) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\rho_1\) | \(\sigma_{1}\) | \(v_{1}\) | \(v_{8}\) | \(v_{17}\) | \(v_{24}\) | \(v_{4}\) | \(v_{12}\) | \(v_{13}\) | \(v_{21}\) | \(v_{5}\) | \(v_{9}\) | \(v_{16}\) | \(v_{20}\) |
\(\sigma_{8}\) | \(v_{8}\) | \(v_{1}\) | \(v_{24}\) | \(v_{17}\) | \(v_{12}\) | \(v_{4}\) | \(v_{21}\) | \(v_{13}\) | \(v_{9}\) | \(v_{5}\) | \(v_{20}\) | \(v_{16}\) | |
\(\sigma_{17}\) | \(v_{17}\) | \(v_{24}\) | \(v_{1}\) | \(v_{8}\) | \(v_{13}\) | \(v_{21}\) | \(v_{4}\) | \(v_{12}\) | \(v_{16}\) | \(v_{20}\) | \(v_{5}\) | \(v_{9}\) | |
\(\sigma_{24}\) | \(v_{24}\) | \(v_{17}\) | \(v_{8}\) | \(v_{1}\) | \(v_{21}\) | \(v_{13}\) | \(v_{12}\) | \(v_{4}\) | \(v_{20}\) | \(v_{16}\) | \(v_{9}\) | \(v_{5}\) | |
\(\rho_2\) | \(\sigma_{4}\) | \(v_{4}\) | \(v_{13}\) | \(v_{21}\) | \(v_{12}\) | \(v_{5}\) | \(v_{16}\) | \(v_{20}\) | \(v_{9}\) | \(v_{1}\) | \(v_{17}\) | \(v_{24}\) | \(v_{8}\) |
\(\sigma_{12}\) | \(v_{12}\) | \(v_{21}\) | \(v_{13}\) | \(v_{4}\) | \(v_{9}\) | \(v_{20}\) | \(v_{16}\) | \(v_{5}\) | \(v_{8}\) | \(v_{24}\) | \(v_{17}\) | \(v_{1}\) | |
\(\sigma_{13}\) | \(v_{13}\) | \(v_{4}\) | \(v_{12}\) | \(v_{21}\) | \(v_{16}\) | \(v_{5}\) | \(v_{9}\) | \(v_{20}\) | \(v_{17}\) | \(v_{1}\) | \(v_{8}\) | \(v_{24}\) | |
\(\sigma_{21}\) | \(v_{21}\) | \(v_{12}\) | \(v_{4}\) | \(v_{13}\) | \(v_{20}\) | \(v_{9}\) | \(v_{5}\) | \(v_{16}\) | \(v_{24}\) | \(v_{8}\) | \(v_{1}\) | \(v_{17}\) | |
\(\rho_3\) | \(\sigma_{5}\) | \(v_{5}\) | \(v_{20}\) | \(v_{9}\) | \(v_{16}\) | \(v_{1}\) | \(v_{24}\) | \(v_{8}\) | \(v_{17}\) | \(v_{4}\) | \(v_{21}\) | \(v_{12}\) | \(v_{13}\) |
\(\sigma_{9}\) | \(v_{9}\) | \(v_{16}\) | \(v_{5}\) | \(v_{20}\) | \(v_{8}\) | \(v_{17}\) | \(v_{1}\) | \(v_{24}\) | \(v_{12}\) | \(v_{13}\) | \(v_{4}\) | \(v_{21}\) | |
\(\sigma_{16}\) | \(v_{16}\) | \(v_{9}\) | \(v_{20}\) | \(v_{5}\) | \(v_{17}\) | \(v_{8}\) | \(v_{24}\) | \(v_{1}\) | \(v_{13}\) | \(v_{12}\) | \(v_{21}\) | \(v_{4}\) | |
\(\sigma_{20}\) | \(v_{20}\) | \(v_{5}\) | \(v_{16}\) | \(v_{9}\) | \(v_{24}\) | \(v_{1}\) | \(v_{17}\) | \(v_{8}\) | \(v_{21}\) | \(v_{4}\) | \(v_{13}\) | \(v_{12}\) |
\begin{align} &\rho_2 \ni \sigma_{4}, \quad \sigma_{4}(b_3)=\sigma_{4}(-v_{21}-v_{13}-v_{12}-v_{4})=-v_{9}-v_{20}-v_{16}-v_{5}=c_3 \notag \\ &\therefore \ \sigma_{4}(b_3)=c_3 \notag \\ &同様に \quad \sigma_{12}(b_3)=c_3, \ \sigma_{13}(b_3)=c_3, \ \sigma_{21}(b_3)=c_3 \quad \Rightarrow \quad \therefore \ \rho_2(b_3)=c_3\\ \notag \\ &\rho_3 \ni \sigma_{5}, \quad \sigma_{5}(b_3)=\sigma_{5}(-v_{21}-v_{13}-v_{12}-v_{4})=-v_{17}-v_{8}-v_{24}-v_{1}=a_3 \notag \\ &\therefore \ \sigma_{5}(b_3)=a_3 \notag \\ &同様に \quad \sigma_{9}(b_3)=a_3, \ \sigma_{16}(b_3)=a_3, \ \sigma_{20}(b_3)=a_3 \quad \Rightarrow \quad \therefore \ \rho_3(b_3)=a_3\\ \notag \\ \end{align}
\begin{align} \rho_2 \ni \sigma_{12}, \quad \sigma_{12}(a_0)&= \sigma_{12}(v_{1}v_{8}v_{17}v_{24})=\sigma_{12}(v_1)\sigma_{12}(v_8)\sigma_{12}(v_{17})\sigma_{12}(v_{24}) \notag \\ &=v_{12}v_{21}v_{13}v_{4} =b_0 \qquad \therefore \ \sigma_{12}(a_0)=b_0 \notag \\ 同様に \quad \sigma_{4}(a_0)=b_0 &, \ \sigma_{13}(a_0)=b_0, \ \sigma_{21}(a_0)=b_0 \quad \Rightarrow \quad \therefore \ \rho_2(a_0)=b_0\\ \end{align}
\(\rho_i(a_i)\) | \(\rho_i(b_j)\) | \(\rho_i(c_k)\) | |
---|---|---|---|
\(\rho_1\) | \(a_i\) | \(b_j\) | \(c_k\) |
\(\rho_2\) | \(b_i\) | \(c_j\) | \(a_k\) |
\(\rho_3\) | \(c_i\) | \(a_j\) | \(b_k\) |
\(\rho_i(h_0)\) | \(\rho_i(h_1)\) | \(\rho_i(h_2)\) | |
---|---|---|---|
\(\rho_1\) | \(h_0\) | \(h_1\) | \(h_2\) |
\(\rho_2\) | \(h_1\) | \(h_2\) | \(h_0\) |
\(\rho_3\) | \(h_2\) | \(h_0\) | \(h_1\) |
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)