\begin{align} \setCounter{0} x^3-1=&(x-1)(x^2+x+1) \notag \\ \therefore \ \Phi_3(x) \equiv & \ (x^2+x+1) \quad \in \ Q[x]\\ \end{align}
\begin{align} &\left\{ \begin{array}{l} \Phi_3(x)=x^2+x+1=(x-\alpha)(x-\beta)\\ \alpha+\beta=-1 \quad \alpha\beta=1 \end{array} \right. \\ \end{align}
\begin{align} v &\equiv 1 \cdot \alpha+2 \cdot \beta \\ \notag \\ \sigma_1&=\begin{pmatrix} \alpha&\beta \\ \alpha &\beta \end{pmatrix} \quad \sigma_2=\begin{pmatrix} \alpha&\beta \\ \beta&\alpha \end{pmatrix} \quad \Rightarrow \quad \left\{ \begin{array}{l} \sigma_1(v)=v_1=\alpha+2\beta \\ \sigma_2(v)=v_2=\beta+2\alpha \end{array} \right. \\ \notag \\ V(x) &\equiv (x-v_1)(x-v_2) \\ &=x^2-(v_1+v_2)x+v_1v_2=x^2-3(\alpha+\beta)x+(2\alpha^2+2\beta^2+5\alpha\beta) \notag \\ &=x^2-3(\alpha+\beta)x+\{2(\alpha+\beta)^2+\alpha\beta\} \quad ( \ \alpha+\beta=-1 \quad \alpha\beta=1 \ ) \notag \\ &=x^2+3x+3 \quad \in Q[x] \\ \notag \\ \therefore \quad &g_0(x)=x^2+3x+3 \quad \Rightarrow \quad g_0(v)=v^2+3v+3=0 \quad ( \ \because \ v_1=v \ )\\ \end{align}
\begin{align} v=\alpha+2\beta &=-\alpha-2 \quad ( \ \because \quad \alpha+\beta=-1 \ ) \notag \\ &\Downarrow \notag \\ \alpha &=-v-2 \quad \Rightarrow \quad \beta=-1-\alpha=-v-3 \\ &\Downarrow \notag \\ & eq(4) \quad \Rightarrow \quad v_1=v, \quad v_2=-v-3 \\ \end{align}
\begin{align} &\Phi_3(x)=(x-\alpha(v))(x-\beta(v)) & &\left\{ \begin{array}{l} \alpha=\alpha(v)=-v-2 \\ \beta=\beta(v)=v+1 \end{array} \right. \\ \notag \\ &g_0(x)=(x-v_1)(x-v_2) & &\left\{ \begin{array}{l} \sigma_1(v)=v_1=v_1(v)=v \\ \sigma_2(v)=v_2=v_2(v)=-v-3 \end{array} \right. \\ \end{align}
\begin{align} &\sigma_2 \circ \sigma_2(v)=\sigma_2(v_2)=\sigma_2(-v-3)=-\sigma_2(v)-3 \notag \\ &=-v_2-3=-(-v-3)-3=v=\sigma_1(v) \notag \\ &\sigma_2 \circ \sigma_2(v)=\sigma_1(v)\qquad \therefore \ \sigma_2 \circ \sigma_2=\sigma_1 \end{align}
\begin{align} \sigma_2(\beta)=&\sigma_2(v+1)=\sigma_2(v)+1=v_2+1 \notag \\ =&-v-3+1=-v-2=\alpha \qquad \therefore \ \sigma_2(\beta)=\alpha \end{align}
\begin{align} \sigma_2(v_2)=&\sigma_2(-v-3)=-\sigma_2(v)-3=-v_2-3 \notag \\ =&-(-v-3)-3=v=v_1 \qquad \therefore \ \sigma_2(v_2)=v_1 \end{align}
\( i \backslash j \) | \(\sigma_1\) | \(\sigma_2\) |
---|---|---|
\(\sigma_1\) | \(\sigma_1\) | \(\sigma_2\) |
\(\sigma_2\) | \(\sigma_2\) | \(\sigma_1\) |
\( \ \) | \(\sigma_i(\alpha)\) | \(\sigma_i(\beta)\) |
---|---|---|
\(\sigma_1\) | \(\alpha\) | \(\beta\) |
\(\sigma_2\) | \(\beta\) | \(\alpha\) |
\( i \backslash j \) | \(\sigma_i(v_1)\) | \(\sigma_i(v_2)\) |
---|---|---|
\(\sigma_1\) | \(v_1\) | \(v_2\) |
\(\sigma_2\) | \(v_2\) | \(v_1\) |
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)