ガロア理論を使って方程式を解いた事ありますか?

Home

【例題1】 EX1-RT1  EX1-RT2  EX1-RT3  EX1-RT4   ガロア群
         \(f(x)=x^3+3x+1\)           \(S_3\)
【例題2】 EX2  \(f(x)=x^3-3x+1\)           \(A_3\)
【例題3】 EX3  \(f(x)=x^5-10x^3+5x^2+10x+1\)  \( \ \ C_5\)
【例題4】 EX4  \(f(x)=x^4+4x+2\)           \(S_4\)


    【補足1】 APX1 代数体上での因数分解
    【補足2】 APX2 1の原始冪乗根 \("\omega \ and \ \zeta_5"\) の計算
    【補足3】 APX3 巡回多項式と円分方程式 \(\Phi_{17}(x)\)
    【補足4】 APX4 添加数生成時の計算のポイント
    【補足5】 APX5 \(x^3-2=0, \ x^5-3=0\) に関して
    【補足6】 APX6 拡大体 \(F_i\) での計算の注意点

                                          Home   

【補足1】 代数体上での因数分解

APX1-1 \(Res(f(x+v),g(v),v)\) の分析(2)

前頁式(11)より\(\{ \ H_1,H_2,H_3 \ \}\) はガロア群 \(A_3\) の要素での変換で不変となるので、 基礎体 \(F_0\) 上の多項式となるはずです。以下そのことを確認します。 【例題2】で求めた\(\{\alpha,\beta,\gamma\}\) と \(\{v_1,v_4,v_5\}\) の 多項式表現(12)(13)を代入すると、\(\{ \ H_1,H_2,H_3 \ \}\) は最終的に式(17)となり、 やはり \(F_0[x]\) である事が判ります。

\begin{align} \setCounter{11} &\left[ \quad \alpha =\frac{6-{{v}^{2}}}{3} \quad \beta =\frac{2 {{v}^{2}}-3 v-12}{3} \quad \gamma =\frac{-{{v}^{2}}+3 v+6}{3} \quad \right]\\ \notag \\ &\left\{ \begin{array}{l} &{v_1}=v &{v_2}={{v}^{2}}-v-6&{v_3}=-{{v}^{2}}+2 v+6\\ &{v_4}=-{{v}^{2}}+v+6 &{v_5}={{v}^{2}}-2 v-6 &{v_6}=-v \end{array} \right. \\ \notag \\ &H_1={{x}^{3}}-\frac{7 {{v}^{4}} x}{3}+7 {{v}^{3}} x+21 {{v}^{2}} x-42 v x-84 x \notag \\ &\qquad -\frac{20 {{v}^{6}}}{27}+\frac{{{v}^{5}}}{3}+19 {{v}^{4}}-10 {{v}^{3}}-114 {{v}^{2}}+12 v+160 \notag \\ &\qquad =x^3-21x+37 \qquad (mod \ g(v))\\ \notag \\ &H_2={{x}^{3}}-\frac{4 {{v}^{4}} x}{3}+4 {{v}^{3}} x+12 {{v}^{2}} x-24 v x-48 x \notag \\ &\qquad +\frac{16 {{v}^{6}}}{27}-\frac{8 {{v}^{5}}}{3}-8 {{v}^{4}}+32 {{v}^{3}}+48 {{v}^{2}}-96 v-128 \notag \\ &\qquad=x^3-12x-8 \qquad (mod \ g(v))\\ \notag \\ &H_3={{x}^{3}}-\frac{{{v}^{4}} x}{3}+{{v}^{3}} x+3 {{v}^{2}} x-6 v x-12 x \notag \\ &\qquad -\frac{2 {{v}^{6}}}{27}+\frac{{{v}^{5}}}{3}+{{v}^{4}}-4 {{v}^{3}}-6 {{v}^{2}}+12 v+16 \notag \\ &\qquad =x^3-3x+1 \qquad (mod \ g(v))\\ \notag \\ &\therefore \quad H_1=x^3-21x+37 \qquad H_2=x^3-12x-8 \qquad H_3=x^3-3x+1 \\ \end{align}


APX1-1 \(Res(f(x+v),g(v),v)\) の分析(3)

終結式の表現にはもう一つあります。シルベスター行列(Sylvester matrix)の行列式表現です。
シルベスター行列に関しては、教科書を見ていただく事にして、【例題2】の場合を計算してみます。
式(18)の \(f(x+v)\) を \(v\) の多項式と考え、式(19)の \(g(v)\) と共に \(v\) の3次から0次までの 係数を式(20)の様に並べたものがシルベスター行列です。(ここでは \(SylM\) と記します。)

\begin{align} &f(x+v)=v^3+(3x)v^2+(3x^2-3)v+(x^3-3x-1) \\ &g(v)=v^3-9v-9 \\ \notag \\ &SylM=\begin{bmatrix} 1 & 3x & (3x^2-3) & (x^3-3x+1) & 0 & 0 \\ 0 & 1 & 3x & (3x^2-3) & (x^3-3x+1) & 0 \\ 0 & 0 & 1 & 3x & (3x^2-3) & (x^3-3x+1) \\ 1 & 0 & -9 & -9 & 0 & 0 \\ 0 & 1 & 0 & -9 & -9 & 0 \\ 0 & 0 & 1 & 0 & -9 & -9 \end{bmatrix}\\ \notag \\ &Res(f(x+v) ,g(v),v)=det(SylM) \notag \\ &\qquad =-{{x}^{9}}+36 {{x}^{7}}-30 {{x}^{6}}-351 {{x}^{5}} +396 {{x}^{4}}+1023 {{x}^{3}}-1080 {{x}^{2}}-612 x+296 \\ &\qquad =-(x^3-21x+37)(x^3-12x-8)(x^3-3x+1)=R(x)\\ \end{align}


式(22)の様に \(-R(x)\) は、3つの多項式に因数分解できたので、各々に下式(23)の様に名前を付けます。
式(17)と式(23)を比べてください。なんと下の式(25)が成り立ちます!

\begin{align} &R_1(x)=x^3-21x+37, \quad R_2(x)=x^3-12x-8, \quad R_3(x)=x^3-3x+1\\ &\therefore \quad Res(f(x+v),g(v),v)=R(x)=-R_1(x) \cdot R_2(x) \cdot R_3(x)\\ \notag \\ &\bbox[#FFFF00]{H_1=R_1(x)} \qquad \bbox[#7FFF00]{H_2=R_2(x)} \qquad \bbox[#00FFFF]{H_3=R_3(x)} \\ \end{align}



--- 試しに【例題1】の場合は? \(Res(f(x+2v),g(v),v)\) の分析  ---

(注)【例題1】の場合、元吉アルゴリズムで \(s=\pm 1\) の場合無平方でなくなるため、\(s=-2\) としました。

【例題1】では \(f(x)\) のガロア群は \(S_3\) でした。そして、\(v\) の最小多項式 \(g(x)\) は、 \(\{v_1,v_2,..,v_6\}\)の6個の根を持っています。 従って式(28)は \(3 \times 6=18\) で \(x\) の18次式となります。
式の計算は【例題2】と殆ど同じなので、敢えて説明はしませんが、ポイントは下式(29)の色付けです。

\begin{align} &f(x)=x^3+3x+1 \qquad g(x)={{x}^{6}}+18 {{x}^{4}}+81 {{x}^{2}}+135\\ \notag \\ &f(x+2v)=(x+2v-\alpha)(x+2v-\beta)(x+2v-\gamma) \notag \\ &\qquad \qquad =8v^3+(12x)v^2+(6x^2+6)v +(x^3+3x+1)\\ \notag \\ &Res(f(x+2v),g(v),v)=(-1)^{3 \cdot 6}\prod_{j=1}^{6}f(v_j) \notag \\ &= \bbox[#FFC0CB]{ f(x+2v_1) \cdot f(x+2v_2)\cdot f(x+2v_3)\cdot f(x+2v_4)\cdot f(x+2v_5) \cdot f(x+2v_6) } \\ \notag \\ &=\left\{\bbox[#FFFF00]{(x+2v_1-\alpha)}\bbox[#7FFF00]{(x+2v_1-\beta)}\bbox[#00FFFF]{(x+2v_1-\gamma)} \right \} \notag \\ & \times \left\{\bbox[#FFFF00]{(x+2v_2-\alpha)}\bbox[#00FFFF]{(x+2v_2-\beta)}\bbox[#7FFF00]{(x+2v_2-\gamma)} \right \} \notag \\ & \times \left\{\bbox[#7FFF00]{(x+2v_3-\alpha)}\bbox[#FFFF00]{(x+2v_3-\beta)}\bbox[#00FFFF]{(x+2v_3-\gamma)} \right \} \\ & \times \left\{\bbox[#00FFFF]{(x+2v_4-\alpha)\bbox[#FFFF00]{(x+2v_4-\beta)}\bbox[#7FFF00]{(x+2v_4-\gamma)}} \right \} \notag \\ & \times \left\{\bbox[#7FFF00]{(x+2v_5-\alpha)}\bbox[#00FFFF]{(x+2v_5-\beta)}\bbox[#FFFF00]{(x+2v_5-\gamma)} \right \} \notag \\ & \times \left\{\bbox[#00FFFF]{(x+2v_6-\alpha)}\bbox[#7FFF00]{(x+2v_6-\beta)}\bbox[#FFFF00]{(x+2v_6-\gamma)} \right \} \notag \\ \notag \\ &Y_1=\bbox[#FFFF00]{(x+2v_1-\alpha)}\quad Y_2=\bbox[#7FFF00]{(x+2v_1-\beta)} \quad Y_3=\bbox[#00FFFF]{(x+2v_1-\gamma) } \\ \notag \\ &\bbox[#FFFF00]{H_1=(x+2v_1-\alpha)(x+2v_2-\alpha)(x+2v_3-\beta) (x+2v_4-\beta)(x+2v_5-\gamma)(x+2v_6-\gamma)} \\ &\bbox[#7FFF00]{H_2=(x+2v_1-\beta)(x+2v_2-\gamma)(x+2v_3-\alpha) (x+2v_4-\gamma)(x+2v_5-\alpha)(x+2v_6-\beta)} \\ &\bbox[#00FFFF]{H_3=(x+2v_1-\gamma)(x+2v_2-\beta)(x+2v_3-\gamma) (x+2v_4-\alpha)(x+2v_5-\beta)(x+2v_6-\alpha)} \\ \end{align}


【例題2】の場合と同様に、上記\(\{ \ H_1,H_2,H_3 \ \}\) は、\(f(x)\) の ガロア群 \(S_3\) で不変なので、以下の式が成り立ちます。従って、基礎体 \(F_0\) 上の多項式として表現できます。

\begin{align} H_i=\sigma_1(H_i)=\sigma_2(H_i)=\sigma_3(H_i)=\sigma_4(H_i)=\sigma_5(H_i)=\sigma_6(H_i) \quad [i=1,2,3] \\ \end{align}

次ページに続く


Profile
  Name:scruta   Daily life:mowing             

Revision history
  1st upload: 2023/06/17
  revision2 : 2023/07/27


maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。

   download pageへ

Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)
  mailaddress