\begin{align} \setCounter{14} \notag \\ &g_0(x)=(x-v_1)(x-v_2)=x^2+3x+3 \ \in Q[x]\\ \notag \\ &\left\{ \begin{array}{l} h_0 = x-v_1 \\ h_1 = x-v_2 \end{array} \right. \qquad \left\{ \begin{array}{l} h_0, \ h_1 \ \in \ Q(v)[x]\\ g_0(x)=h_0 \cdot h_1 \ \in \ Q[x] \end{array} \right. \\ \notag \\ &\left\{ \begin{array}{l} \sigma_1(h_0)=\sigma_1(x-v_1)=x-\sigma_1(v_1)=x-v_1=h_0\\ \sigma_1(h_1)=\sigma_1(x-v_2)=x-\sigma_1(v_2)=x-v_2=h_1 \end{array} \right. \quad \Rightarrow \quad \left\{ \begin{array}{l} \sigma_1(h_0)=h_0\\ \sigma_1(h_1)=h_1 \end{array} \right.\\ \notag \\ &\left\{ \begin{array}{l} \sigma_2(h_0)=\sigma_2(x-v_1)=x-\sigma_2(v_1)=x-v_2=h_1\\ \sigma_2(h_1)=\sigma_2(x-v_2)=x-\sigma_2(v_2)=x-v_1=h_0 \end{array} \right. \quad \Rightarrow \quad \left\{ \begin{array}{l} \sigma_2(h_0)=h_1\\ \sigma_2(h_1)=h_0 \end{array} \right. \\ \end{align}
\begin{align} &\begin{bmatrix} t_0 \\ t_1 \end{bmatrix} \equiv \frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} = \begin{bmatrix} \frac{(h_0+h_1)}{2} \\ \frac{(h_0-h_1)}{2} \end{bmatrix} = \begin{bmatrix} x+\frac{3}{2} \\ -v-\frac{3}{2} \end{bmatrix} \\ &\left\{ \begin{array}{l} \sigma_1(t_0)=t_0\\ \sigma_1(t_1)=t_1 \end{array} \right. \qquad \left\{ \begin{array}{l} \sigma_2(t_0)=t_0\\ \sigma_2(t_1)=-t_1 \end{array} \right. \end{align}
\begin{align} &t_0 \ \in Q[x] \qquad t_1 \notin Q[x]\\ &\sigma_2(t_1^2)=\sigma_2(t_1) \cdot \sigma_2(t_1)=(-t_1)^2=t_1^2 \\ \notag \\ &t_1^2=v^2+3v+\frac{9}{4}=-\frac{3}{4} \quad (mod \ g_0(v)) \qquad \therefore t_1^2=-\frac{3}{4}=A_0 \in Q \end{align}
\begin{align} t_1^2=-\frac{3}{4} \equiv A_0 \quad &\Rightarrow \quad B_0=t_1^2-A_0 \quad \ \therefore \ t_1= a_0 \equiv \sqrt{A_0}=\frac{\sqrt{-3}}{2}\\ \notag \\ t_1 \quad &\Rightarrow \quad \tilde{t_1} \equiv a_0 \quad \in Q(a_0) \\ \end{align}
\begin{align} &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1} \end{bmatrix} = \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \end{bmatrix} = \begin{bmatrix} t_0+\tilde{t_1}\\ t_0-\tilde{t_1} \end{bmatrix} = \begin{bmatrix} x+\frac{3}{2}+a_0\\ x+\frac{3}{2}-a_0 \end{bmatrix} \\ \notag \\ &\left\{ \begin{array}{l} h_0=x-v \\ h_1=x+v+3\\ \\ \{ \ h_0,h_1 \ \} \ \in Q(v)[x] \\ \quad g_0(x)=h_0 \cdot h_1 \end{array} \right. \quad \implies \quad \left\{ \begin{array}{l} \tilde{h_0}=x+\frac{3}{2}+a_0\\ \tilde{h_1}=x+\frac{3}{2}-a_0\\ \\ \{ \ \tilde{h_0},\tilde{h_1} \ \} \ \in Q(a_0)[x] \\ \quad g_0(x)=\tilde{h_0} \cdot \tilde{h_1} \end{array} \right. \qquad \end{align}
\begin{align} &Q(a_0)上のvの最小多項式 \quad g_1(x)=\tilde{h_0}=x+\frac{3}{2}+a_0 \quad \\ &g_1(x)=0 \quad \Rightarrow \quad v=-\frac{3}{2}-a_0 \qquad 但し a_0=\frac{\sqrt{-3}}{2}\\ \notag \\ &\left\{ \begin{array}{l} \alpha=-v-2=-\frac{1}{2}+a_0 \\ \beta=v+1=-\frac{1}{2}-a_0 \end{array} \right. \quad \implies \quad \omega=-\frac{1}{2}+\frac{\sqrt{-3}}{2} \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)