\begin{align} \setCounter{14} &x^{17}-1=(x-1) \times \Phi_{17}(x) \notag \\ \notag \\ &\Phi_{17}(x) =( {{x}^{16}}+{{x}^{15}}+{{x}^{14}}+{{x}^{13}}+{{x}^{12}}+{{x}^{11}}+{{x}^{10}}+{{x}^{9}} \notag \\ &\qquad \qquad +{{x}^{8}}+{{x}^{7}}+{{x}^{6}}+{{x}^{5}}+{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+x+1) \\ \notag \\ &Minimal \ Polynomial \ of \ v : \ g_0(x)=\Phi_{17}(x) \quad \rightarrow \quad g_0(v)=0\\ \notag \\ &factor(\Phi_{17}(x),g_0(v))=(x-v)(x-v^2)(x-v^3)(x-v^4)(x-v^5) \notag \\ &\qquad \qquad \times(x-v^6)(x-v^7)(x-v^8)(x-v^9)(x-v^{10})(x-v^{11}) \notag \\ &\qquad \qquad \times (x-v^{12})(x-v^{13})(x-v^{14})(x-v^{15}) \notag \\ &\qquad \qquad \times (x+v^{15}+v^{14}+v^{13}+v^{12}+v^{11}+v^{10}+v^9 \\ &\qquad \qquad +v^8+v^7+v^6+v^5+v^4+v^3+v^2+v+1) \notag \\ \end{align}
\begin{align} \mu_{1}(v)&=v_{1}=v & \mu_{2}(v)&=v_{2}=v^{2} & \mu_{3}(v)&=v_{3}=v^{3} \notag \\ \mu_{4}(v)&=v_{4}=v^{4} & \mu_{5}(v)&=v_{5}=v^{5} & \mu_{6}(v)&=v_{6}=v^{6} \notag \\ \mu_{7}(v)&=v_{7}=v^{7} & \mu_{8}(v)&=v_{8}=v^{8} & \mu_{9}(v)&=v_{9}=v^{9} \\ \mu_{10}(v)&=v_{10}=v^{10} & \mu_{11}(v)&=v_{11}=v^{11} & \mu_{12}(v)&=v_{12}=v^{12} \notag \\ \mu_{13}(v)&=v_{13}=v^{13} & \mu_{14}(v)&=v_{14}=v^{14} & \mu_{15}(v)&=v_{15}=v^{15} \notag \\ \end{align} \begin{align} \ \mu_{16}(v)&=v_{16}=- (v^{15}+v^{14}+v^{13}+v^{12}+v^{11}+v^{10}+v^9+v^8 \notag \\ &\qquad +v^7+v^6+v^5+v^4+v^3+v^2+v+1) \qquad ( \ mod \ g_0(v) \ ) \notag \\ \end{align}
\begin{align} \quad v^{17}&=v \cdot v^{16}=v \cdot (- (v^{15}+v^{14}+...+v^3+v^2+v+1))\notag \\ &=-(v^{16}+v^{15}+v^{14}+v^{13}+....+v^4+v^3+v^2+v) \notag \\ &=(v^{15}+v^{14}+...+v^2+v+1-v^{15}-v^{14}-....-v^3-v^2-v)=1 \notag \\ \notag \\ \therefore \ v^{17}&=1 \quad \Rightarrow \quad v^i \cdot v^j=v^{i \cdot j} \quad \ (注)\ (i \cdot j) \ は \ (mod \ 17) \ で計算\\ \end{align}
\begin{align} &\mu_3 (v)=v_3=v^3 \notag \\ &\mu_3^2(v)=\mu_3(\mu_3(v))=\mu_3(v_3)=\mu_3(v^3)=(\mu_3(v))^3=(v^3)^3=v^9=v_9=\mu_9(v) \notag \\ &\mu_3^3(v)=\mu_3(\mu_3^2(v))=\mu_3(v_9)=\mu_3(v^9)=(\mu_3(v))^9=(v^3)^9=v^{27}=v^{10}=v_{10}=\mu_{10}(v) \notag \\ &\mu_3^4(v)=\mu_3(\mu_3^3(v))=\mu_3(v^{10})=v^{30}=v^{13}=v_{13}=\mu_{13}(v)\notag \\ \end{align}
\begin{align} \mu_3^{5}(v)&=\mu_{5}(v) & \mu_3^{6}(v)&=\mu_{15}(v) & \mu_3^{7}(v)&=\mu_{11}(v) & \mu_3^{8}(v)&=\mu_{16}(v) \notag \\ \mu_3^{9}(v)&=\mu_{14}(v) & \mu_3^{10}(v)&=\mu_{8}(v) & \mu_3^{11}(v)&=\mu_{7}(v) & \mu_3^{12}(v)&=\mu_{4}(v) \notag \\ \mu_3^{13}(v)&=\mu_{12}(v) & \mu_3^{14}(v)&=\mu_{2}(v) & \mu_3^{15}(v)&=\mu_{6}(v) & \mu_3^{16}(v)&=\mu_{1}(v) \notag \\ \mu_3^{17}(v)&=\mu_{3}(v) & \mu_3^{18}(v)&=\mu_{9}(v) &...... & & & \notag \\ \end{align}
\begin{align} &Gal(F_0(v)/F_0)=C_{16} \notag \\ &\quad C_{16}=\{\mu_{1}, \ \mu_{2}, \ \mu_{3}, \ \mu_{4}, \ \mu_{5}, \ \mu_{6}, \ \mu_{7}, \ \mu_{8},\notag \\ &\qquad \qquad \mu_{9}, \ \mu_{10}, \ \mu_{11}, \ \mu_{12}, \ \mu_{13}, \ \mu_{14}, \ \mu_{15}, \ \mu_{16}\} \\ \notag \\ &Normal \ subgroup \ of \ C_{16} \notag \\ \notag \\ &\left\{ \begin{array}{l} C_8=\{\mu_{1}, \ \mu_{2}, \ \mu_{4}, \ \mu_{8}, \ \mu_{9}, \ \mu_{13}, \ \mu_{15}, \ \mu_{16}\} \\ C_4=\{\mu_{1}, \ \mu_{4}, \ \mu_{13}, \ \mu_{16}\} \\ C_2=\{\mu_{1}, \ \mu_{16}\}\\ {e}=\{e\} \\ \end{array} \right. \\ \notag \\ &Composition \ series \ of \ Galois \ group \ C_{16} \notag \\ \notag \\ &\qquad [ \ C_{16} \rhd C_8 \rhd C_4 \rhd C_2 \rhd {e} \ ]\\ \notag \\ & \qquad \Downarrow \notag \\ &Cyclic \ extensions \notag \\ \notag \\ & [ \ C_{16}/C_8 \rhd e \ ] \rightarrow [ \ C_8/C_4 \rhd e \ ] \rightarrow [ \ C_4/C_2 \rhd e \ ] \rightarrow [ \ C_2 \rhd e \ ]\\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)