\begin{align} \setCounter{7} &\begin{bmatrix} t_0 \\ t_1 \\ t_2 \end{bmatrix} =\frac{1}{3} \begin{bmatrix} 1&1&1 \\ 1&\omega&\omega^2\\ 1&(\omega^2)&(\omega^2)^2\\ \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix} \\ \notag \\ &\left\{ \begin{array}{l} h_0=x^4+a_3x^3+a_2x^2+a_1x+a_0 \\ h_1=x^4+b_3x^3+b_2x^2+b_1x+b_0 \\ h_2=x^4+c_3x^3+c_2x^2+c_1x+c_0 \\ \end{array} \right. \\ \end{align}
\begin{align} t_0&=x^4+d_{03}x^3+d_{02}x^2+d_{01}x+d_{00}\\ &\left\{ \begin{array}{l} d_{03}=\frac{1}{3}(a_{3}+b_{3}+c_{3}) \qquad d_{02}=\frac{1}{3}(a_{2}+b_{2}+c_{2}) \notag \\ d_{01}=\frac{1}{3}(a_{1}+b_{1}+c_{1}) \qquad d_{00}=\frac{1}{3}(a_{0}+b_{0}+c_{0}) \notag \\ \end{array} \right. \\ \notag \\ t_1&=d_{13}x^3+d_{12}x^2+d_{11}x+d_{10}=d_{13}\Biggl(x^3+\frac{d_{12}}{d_{13}}x^2+\frac{d_{11}}{d_{13}}x+\frac{d_{10}}{d_{13}}\Biggr)\\ &\left\{ \begin{array}{l} d_{13}=\frac{1}{3}(a_{3}+\omega b_{3}+\omega^2 c_{3}) \qquad d_{12}=\frac{1}{3}(a_{2}+\omega b_{2}+\omega^2 c_{2})\notag \\ d_{11}=\frac{1}{3}(a_{1}+\omega b_{1}+\omega^2 c_{1}) \qquad d_{10}=\frac{1}{3}(a_{0}+\omega b_{0}+\omega^2 c_{0})\notag \\ \end{array} \right. \\ \notag \\ t_2&=d_{23}x^3+d_{22}x^2+d_{21}x+d_{20}=d_{23}\Biggl(x^3+\frac{d_{22}}{d_{23}}x^2+\frac{d_{21}}{d_{23}}x+\frac{d_{20}}{d_{23}}\Biggr)\\ &\left\{ \begin{array}{l} d_{23}=\frac{1}{3}(a_{3}+\omega^2 b_{3}+\omega c_{3}) \qquad d_{22}=\frac{1}{3}(a_{2}+\omega^2 b_{2}+\omega c_{2})\notag \\ d_{21}=\frac{1}{3}(a_{1}+\omega^2 b_{1}+\omega c_{1}) \qquad d_{20}=\frac{1}{3}(a_{0}+\omega^2 b_{0}+\omega c_{0})\notag \\ \end{array} \right. \\ \end{align}
\begin{align} &\rho_1(d_{0j})=\rho_2(d_{0j})=\rho_3(d_{0j})=d_{0j} \notag \\ &\qquad \qquad \therefore \rho_i(d_{0j})=d_{0j}\quad i=[0,1,2],j=[0,1,2,3] \\ \notag \\ &d_{0j}: Gal(F_2/F_1) \ invariant \quad \Rightarrow \quad \therefore \ t_0 \ \in F_1[x] \\ \end{align}
\begin{align} &t_1=d_{13} \cdot q_1 \qquad q_1 \equiv \Biggl(x^3+\frac{d_{12}}{d_{13}}x^2+\frac{d_{11}}{d_{13}}x+\frac{d_{10}}{d_{13}}\Biggr) \\ &t_2=d_{23} \cdot q_2 \qquad q_2 \equiv \Biggl(x^3+\frac{d_{22}}{d_{23}}x^2+\frac{d_{21}}{d_{23}}x+\frac{d_{20}}{d_{23}}\Biggr) \\ \end{align}
\begin{align} \rho_2( d_{13})&=\frac{1}{3}\rho_2 ((a_{3}+\omega b_{3}+\omega^2 c_{3}))=\frac{1}{3}(b_3+\omega c_3+\omega^2 a_3)\notag \\ &=\frac{\omega^2}{3}(a_{3}+\omega b_{3}+\omega^2 c_{3})=\omega^2 \cdot d_{13} \notag \\ \rho_2( d_{12})&=\frac{1}{3}\rho_2 ((a_{2}+\omega b_{2}+\omega^2 c_{2}))=\frac{1}{3}(b_2+\omega c_2+\omega^2 a_2)\notag \\ &=\frac{\omega^2}{3}(a_{2}+\omega b_{2}+\omega^2 c_{2})=\omega^2 \cdot d_{12} \notag \\ \notag \\ \therefore \ \rho_2\Bigl(\frac{d_{12}}{d_{13}}\Bigr)&=\frac{\omega^2d_{12}}{\omega^2d_{13}}=\frac{d_{12}}{d_{13}} \quad 同様に \rho_2\Bigl(\frac{d_{11}}{d_{13}}\Bigr)=\frac{d_{11}}{d_{13}}, \ \rho_2\Bigl(\frac{d_{10}}{d_{13}}\Bigr)=\frac{d_{10}}{d_{13}}\\ \end{align}
\( i \backslash j \) | \(\rho_i(d_{0j})\) | \(\rho_i(d_{1j})\) | \(\rho_i(d_{2j})\) | \(\rho_i(d_{1k}/d_{13})\) | \(\rho_i(d_{2k}/d_{23})\) |
---|---|---|---|---|---|
\(\rho_1\) | \(d_{0j}\) | \(d_{1j}\) | \(d_{2j}\) | \(d_{1k}/d_{13}\) | \(d_{2k}/d_{23}\) |
\(\rho_2\) | \(d_{0j}\) | \(\omega^2 \cdot d_{1j} \) | \(\omega \cdot d_{2j}\) | \(d_{1k}/d_{13}\) | \(d_{2k}/d_{23}\) |
\(\rho_3\) | \(d_{0j}\) | \(\omega \cdot d_{1j}\) | \(\omega^2 \cdot d_{2j}\) | \(d_{1k}/d_{13}\) | \(d_{2k}/d_{23}\) |
\begin{align} &q_1 = \Biggl(x^3+\frac{d_{12}}{d_{13}}x^2+\frac{d_{11}}{d_{13}}x+\frac{d_{10}}{d_{13}}\Biggr) \ \in \ F_1[x]\\ &q_2 =\Biggl(x^3+\frac{d_{22}}{d_{23}}x^2+\frac{d_{21}}{d_{23}}x+\frac{d_{20}}{d_{23}}\Biggr) \ \in \ F_1[x]\\ &if \quad d_{13}=0 \quad \rightarrow \quad t_1=d_{12}x^2+d_{11}x+d_{10}=d_{12}\Biggl(x^2+\frac{d_{11}}{d_{12}}x+\frac{d_{10}}{d_{12}}\Biggr)\\ \end{align}
\( i \backslash j \) | \(\rho_i(t_0)\) | \(\rho_i(t_1)\) | \(\rho_i(t_2)\) | \(\rho_i(t_1 t_2)\) |
---|---|---|---|---|
\(\rho_1\) | \(t_0\) | \(t_1\) | \(t_2\) | \(t_1 t_2\) |
\(\rho_2\) | \(t_0\) | \(\omega^2 t_1 \) | \(\omega t_2\) | \(t_1 t_2\) |
\(\rho_3\) | \(t_0\) | \(\omega t_1\) | \(\omega^2 t_2\) | \(t_1 t_2\) |
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)