ガロア理論を使って方程式を解いた事ありますか?

Home

【例題1】 EX1-RT1  EX1-RT2  EX1-RT3  EX1-RT4   ガロア群
         \(f(x)=x^3+3x+1\)           \(S_3\)
【例題2】 EX2  \(f(x)=x^3-3x+1\)           \(A_3\)
【例題3】 EX3  \(f(x)=x^5-10x^3+5x^2+10x+1\)  \( \ \ C_5\)
【例題4】 EX4  \(f(x)=x^4+4x+2\)           \(S_4\)


    【補足1】 APX1 代数体上での因数分解
    【補足2】 APX2 1の原始冪乗根 \("\omega \ and \ \zeta_5"\) の計算
    【補足3】 APX3 巡回多項式と円分方程式 \(\Phi_{17}(x)\)
    【補足4】 APX4 添加数生成時の計算のポイント
    【補足5】 APX5 \(x^3-2=0, \ x^5-3=0\) に関して
    【補足6】 APX6 拡大体 \(F_i\) での計算の注意点

                                          Home   

APX2-1 \("\zeta_5"\)の計算の続き

[7-3] \( \bbox[#CFFFCF]{ Lagrange \ resolvent } \) を利用した巡回拡大の計算(2)

【step2】剰余群\([ \ C_2/e \cong C_2 \ ]\) 巡回拡大\([ \ Q_2/Q_1 \ ]\) \(g_2(x) \)の計算

\begin{align} \setCounter{46} & h_0=\sigma_1(x-v)=\bbox[#FFC0CB]{(x-v_1)} \\ &h_1=\sigma_{24}(x-v)=(x-v_{24}) \\ \notag \\ & \bbox[#CFFFCF]{ \begin{bmatrix} t_0 \\ t_1 \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} } \quad \begin{array}{l} ( \ Lagrange \ resolvent \ ) \\ \end{array} \\ \notag \\ &\left\{ \begin{array}{l} t_0 \ \in \ Q_1[x] \\ t_1 \ \in \ Q_1(v)[x] \end{array} \right. \quad \Longrightarrow \quad \left\{ \begin{array}{l} B_2=a_2^2-A_2=0 \quad A_2 \in Q_1 \\ \tilde{t_1} \ \in \ Q_2[x]=Q(a_1,a_2)[x] \end{array} \right. \notag \\ \notag \\ &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1 } \end{bmatrix} = \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \end{bmatrix} \quad \Longrightarrow \quad \left\{ \begin{array}{l} g_1(x)=\tilde{h_0} \cdot \tilde{h_1} \\ g_2(x) \equiv \tilde{h_0} \ \in \ F_3[x] \end{array} \right. \\ \notag \\ & \bbox[#FFFF00]{ g_1(v)=0 \quad \Rightarrow \quad \left\{ \begin{array}{l} g_2(v)=0\\ B_2=0 \end{array} \right. } \\ \end{align}


上記の計算をしてゆきます。 式(47)(48)に式(31)を代入して計算された \(\{h_0,h_1\}\) を、式(49)に代入して \(\{t_0,t_1\}\) を計算すると 以下の様になります。

\begin{align} &\left\{ \begin{array}{l} h_0=x-v\\ h_1=x+v+5 \end{array} \right. \quad \Rightarrow \quad \left\{ \begin{array}{l} t_0=x+\frac{5}{2}\\ t_1=-v-\frac{5}{2}\\ \end{array} \right. \\ \end{align}


更に \(t_1^2\) を計算すると \(Q_1\) の元である事が判ります。この際注意する事は、計算は \(Q_1(v)\) の中で 行われるので、\(g_1(v)\) による剰余計算をする必要があります。
そこで \(t_1\) を求める2項方程式 \([ \ B_2=0 \ ]\) を構成する事が出来ます。 この方程式の根として \(a_2\) を定義すれば、\(a_2\) を拡大体 \(Q_1\) に添加する事により、 拡大体 \(Q_2\) を構成できます。
元々 \([ \ t_1=a_2 \ ]\) としていたので、\(t_1\)は体 \(Q_2\) の元として表現できた訳ですから、 \(\tilde{t_1}\)と記述する事にします。

\begin{align} &g_1(v)=v^2+5v+\frac{25}{2}+a_1 =0 \notag \\ &t_1^2=v^2+5v+\frac{25}{4}=-a_1-\frac{25}{4} \equiv A_2 \ \in \ Q_1 \quad ( \ mod \ g_1(v) \ ) \\ &\qquad \qquad \Downarrow \notag \\ &B_2=a_2^2-A_2=0 \quad \rightarrow \quad \ Q_2 \equiv Q_1(a_2) \quad \tilde{t_1}=a_2 \ \in \ Q_2 \\ \end{align}


次に、\(\{t_0,\tilde{t_1}\}\) を式(50)に代入して \(\tilde{h_0}\) を 計算したものが、新たな最小多項式 \(g_2(x)\) となります。
何故なら、式(47)より判る様に、もともと \(h_0\) は \((x-v)\) の因子を含んでいるので、当然 \([ \ g_2(v)=0 \ ]\) となり、最終的な \(v\) の解が求まります。

\begin{align} & \tilde{h_0}=t_0+\tilde{t_1}=x+{a_2}+\frac{5}{2} \equiv g_2(x) \quad \in \ Q_2[x]\\ \notag \\ &\quad g_2(x): minimal \ polynomial \ \ of \ v \ \ on \ Q_2 \notag \\ &\quad g_2(v)=v+{a_2}+\frac{5}{2} =0\\ \notag \\ &\qquad \therefore v=-a_2-\frac{5}{2}\\ \end{align}

式(57)の \(v\) の値を、式(24)に代入して、\([ \ B_2 \ \rightarrow \ B_1 \ ]\) の順に 剰余を取ることにより、\(\Phi_5\) の4根を以下の様に求める事が出来ます。計算例として \(\alpha\) の 場合を示しておきます。

\begin{align} \alpha=&-\frac{{{v}^{3}}+10 {{v}^{2}}+50 v+100}{25} \notag \\ =&-\frac{1}{25}\Bigl[ -\frac{{{\left( 2 {a_2}+5\right) }^{3}}}{8}+\frac{5 {{\left( 2 {a_2}+5\right) }^{2}}}{2}-25 \left( 2 {a_2}+5\right) +100 \Bigr] \notag \\ =&\frac{{{a}_{2}^{3}}}{25}-\frac{{{a}_{2}^{2}}}{10}+\frac{3 {a_2}}{4}-\frac{7}{8} =-\frac{{a_1} {a_2}}{25}+\frac{{a_2}}{2}+\frac{{a_1}}{10}-\frac{1}{4} \\ \end{align}

以上まとめると以下の様になります。式(59)(60)の4根のうちどれを \(\zeta_5\) としても良いです。

\begin{align} \alpha=&-\frac{{a_1} {a_2}}{25}+\frac{{a_2}}{2}+\frac{{a_1}}{10}-\frac{1}{4} \qquad \beta=\frac{3 {a_1} {a_2}}{25}-\frac{{a_2}}{2}-\frac{{a_1}}{10}-\frac{1}{4} \\ \gamma=&-\frac{3 {a_1} {a_2}}{25}+\frac{{a_2}}{2}-\frac{{a_1}}{10}-\frac{1}{4} \qquad \delta=\frac{{a_1} {a_2}}{25}-\frac{{a_2}}{2}+\frac{{a_1}}{10}-\frac{1}{4} \\ \notag \\ B_1=&a_1^2-A_1=0 \qquad A_1=\frac{125}{4} \\ B_2=&a_2^2-A_2=0 \qquad A_2=-a_1-\frac{25}{4} \\ \notag \\ g_0(x)=&x^4+10x^3+50x^2+125x+125 \\ g_1(x)=&x^2+5x+\frac{25}{2}+a_1 \\ g_2(x)=&x+{a_2}+\frac{5}{2} \\ \end{align}



Homeに戻る


Profile
  Name:scruta   Daily life:mowing             

Revision history
  1st upload: 2023/06/17
  revision2 : 2023/07/27


maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。

   download pageへ

Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)
  mailaddress