\begin{align} \setCounter{37} &\left\{ \begin{array}{l} t_0=(2x^8+x^7+5x^6+7x^5+4x^4+7x^3+5x^2+x+2)/2 \\ \tilde{t_1} \equiv a_1x(x+1)^2(x^2+1)(x^2-x+1) \\ \end{array} \right. \\ \notag \\ &\tilde{h_0}=\frac{1}{2}(t_0+\tilde{t_1}) \equiv g_1(x) \\ &g_1(x)=x^8+\frac{x^7}{2}+\frac{5x^6}{2}+\frac{7x^5}{2}+2x^4+\frac{7x^3}{2} \notag \\ &\qquad \quad +a_1x(x+1)^2(x^2+1)(x^2-x+1)+\frac{5x^2}{2}+\frac{x}{2}+1 \quad \in \ F_1[x] \\ \notag \\ &g_1(x) : \ Minimal \ polynomial \ of \ v \quad \rightarrow \quad \therefore \ g_1(v)=0 \\ \end{align}
\begin{align} & h_0=\prod_{\mu_i \in \ C_4}\mu_i(x-v)=(x-v_1)(x-v_4)(x-v_{13})(x-v_{16}) \\ & h_1=\prod_{\mu_i \in \ (C_8-C_4)}\mu_i(x-v)=(x-v_2)(x-v_8)(x-v_9)(x-v_{15}) \\ \notag \\ & \begin{bmatrix} t_0 \\ t_1 \end{bmatrix} =\frac{1}{2} \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} \qquad ( \ Lagrange \ resolvent \ )\\ \notag \\ &\left\{ \begin{array}{l} t_0 \ \in \ F_1[x] \\ t_1 \ \in \ F_1(v)[x] \end{array} \right. \quad \Longrightarrow \quad \left\{ \begin{array}{l} B_2=a_2^2-A_2=0 \quad A_2 \in F_1 \\ \tilde{t_1} \ \in \ F_2[x]=F_1(a_2)[x] \end{array} \right. \\ \notag \\ &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1 } \end{bmatrix} = \begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \end{bmatrix} \quad \Rightarrow \quad \left\{ \begin{array}{l} g_1(x)=\tilde{h_0} \cdot \tilde{h_1} \\ g_2(x) \equiv \tilde{h_0} \ \in \ F_2[x] \end{array} \right. \\ \notag \\ & g_1(v)=0 \quad \Rightarrow \quad \left\{ \begin{array}{l} g_2(v)=0\\ B_2=0 \end{array} \right. \\ \end{align}
\begin{align} h_0&=(x-v_1)(x-v_4)(x-v_{13})(x-v_{16}) \notag \\ &=x^4+\frac{\left( 4 {{v}^{7}}+\left( 4 {a_1}+6\right) {{v}^{6}}+...+\left( 4 {a_1}+10\right) v+4 {a_1}+4\right) }{2}x^3+...\notag \\ &+\frac{\left( 4 {{v}^{7}}+\left( 4 {a_1}+6\right) {{v}^{6}}+...+\left( 4 {a_1}+10\right) v+4 {a_1}+4\right) }{2}x+1\\ h_1&=(x-v_2)(x-v_8)(x-v_9)(x-v_{15}) \notag \\ &=x^4+\frac{\bigl(-4v^7+(-4a_1-6)v^6+...+(-4a_1-10)v-2a_1-3\bigr)}{2}x^3+... \notag \\ &+\frac{\bigl( -4v^7+(-4a_1-6)v^6+...+(-4a_1-10)v-2a_1-3\bigr)}{2}x+1 \\ \notag \\ \end{align}
\begin{align} t_0&=x^4+\frac{(2a_1+1)}{4}x^3+\frac{(2a_1+7)}{4}x^2+\frac{(2a_1+1)}{4}+1 \quad \in \ F_1[x]\\ t_1&=\frac{\bigl( 8v^7+(8a_1+12)v^6+...+(8a_1+20)v+6a_1+7 \bigr) }{4}x^3 \notag \\ & +\frac{\bigl( (4a_1-2)v^7+(4a_1+14)v^6+...+(8a_1+12)v+2a_1+11 \bigr) }{4}x^2 \notag \\ & +\frac{\bigl( 8v^7+(8a_1+12)v^6+...+(8a_1+20)v+6a_1+7 \bigr) }{4}x \quad \in \ F_1(v)[x] \\ \end{align}
\begin{align} a_2&=\frac{\bigl( 8v^7+(8a_1+12)v^6+...+(8a_1+20)v+6a_1+7 \bigr) }{4} \ \in \ F_1(v)\\ a_2^2&=\frac{2 {a_1}+17}{8} \equiv A_2 \quad \in \ F_1 \\ B_2&\equiv a_2^2-A_2=0 \quad \rightarrow \quad a_2=\sqrt{A_2} \ \in \ F_2 \equiv F_1(a_2)\\ \notag \\ \end{align}
\begin{align} a_2^{-1}&=-\frac{\bigl( (4a_1-34)v^7+(-28a_1-34)v^6+...+(-24a_1-68)v-22a_1-17)}{34} \\ \notag \\ q_2&\equiv a_2^{-1} \cdot t_1 \quad \rightarrow \quad q_2=x^3+\frac{(2a_1-1)}{4}x^2+x \quad \in \ F_1[x]\\ \tilde{t_1} &\equiv a_2 \cdot q_2=a_2\biggl( x^3+\frac{(2a_1-1)}{4}x^2+x \biggr) \ \in \ F_2[x]\\ \end{align}
\begin{align} \tilde{h_0}&=\frac{1}{2}(t_0+\tilde{t_1}) \equiv g_2(x) \\ g_2(x)&=x^4+\frac{(4a_2+2a_1+1)}{4}x^3+\frac{ \bigl( (2a_1-1)a_2+2a_1+7 \bigr) }{4}x^2+\frac{(4a_2+2a_1+1)}{4}x+1 \\ \notag \\ &g_2(x) : \ Minimal \ polynomial \ of \ v \quad \rightarrow \quad \therefore \ g_2(v)=0 \\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)