\begin{align} \setCounter{0} f(x)&=x^5-3=(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)(x-\epsilon)\\ v&=\alpha+2 \cdot \beta+3 \cdot \gamma+4 \cdot \delta +5 \cdot \epsilon \\ \notag \\ f(x)&=(x-\alpha)(x^4+\alpha^4+x\alpha^3+x^2\alpha^2+x^3\alpha)+(\alpha^5-3) \notag \\ &=(x-\alpha)q_1(x)+r_1\\ \notag \\ q_1(x)&=(x-\beta)(x^3+\beta^3+x(\beta^2+\alpha\beta+\alpha^2)+\alpha\beta^2+x^2(\beta+\alpha)+\alpha^2\beta+\alpha^3) \notag \\ &+(\beta^4+\alpha\beta^3+\alpha^2\beta^2+\alpha^3\beta+\alpha^4) \notag \\ &=(x-\beta)q_2(x)+r_2\\ \notag \\ q_2(x)&=(x-\gamma)(x^2+\gamma^2+x(\gamma+\beta+\alpha)+(\beta+\alpha)\gamma+\beta^2+\alpha\beta+\alpha^2)\notag \\ &+(\gamma^3+(\beta+\alpha)\gamma^2+(\beta^2+\alpha\beta+\alpha^2)\gamma+\beta^3+\alpha\beta^2+\alpha^2\beta+\alpha^3) \notag \\ &=(x-\gamma)q_3(x)+r_3\\ \notag \\ q_3(x)&=(x-\delta)(x+\delta+\gamma+\beta+\alpha)+\delta^2+(\gamma+\beta+\alpha)\delta+\gamma^2 \notag \\ &+(\beta+\alpha)\gamma+\beta^2+\alpha\beta+\alpha^2 \notag \\ &=(x-\delta)q_4(x)+r_4\\ \notag \\ q_4(x)&=(x-\epsilon) \cdot 1 +\epsilon+\delta+\gamma+\beta+\alpha \notag \\ &=(x-\epsilon)q_5(x)+r_5 \\ \end{align}
\begin{align} &f(\alpha)=0, \quad q_1(\beta)=0, \quad q_2(\gamma)=0, \quad q_3(\delta)=0, \quad q_4(\epsilon)=0, \quad eq(2)\\ &\qquad \qquad \Downarrow \notag \\ \notag \\ &\left\{ \begin{array}{l} r_1&=\alpha^5-3=0 \\ r_2&=\beta^4+\alpha\beta^3+\alpha^2\beta^2+\alpha^3\beta+\alpha^4=0 \\ r_3&=\gamma^3+(\beta+\alpha)\gamma^2+(\beta^2+\alpha\beta+\alpha^2)\gamma+\beta^3+\alpha\beta^2+\alpha^2\beta+\alpha^3=0\\ r_4&=\delta^2+(\gamma+\beta+\alpha)\delta+\gamma^2+(\beta+\alpha)\gamma+\beta^2+\alpha\beta+\alpha^2=0\\ r_5&=\epsilon+\delta+\gamma+\beta+\alpha=0\\ r_6&=v-(\alpha+2 \cdot \beta+3 \cdot \gamma+4 \cdot \delta +5 \cdot \epsilon)=0\\ \end{array} \right. \\ \end{align}
\begin{align} &s_1:resultant(r_6,r_5,\epsilon); \quad s_1= -\delta-2\gamma-3\beta-4\alpha-v \notag \\ & \qquad \qquad \Downarrow \notag \\ &s_2:resultant(s_1,r_4,\delta); \notag \\ &\qquad s_2=3\gamma^2+(8β+11\alpha+3v)\gamma+7β^2+(18\alpha+5v)β+13\alpha^2+7v\alpha+v^2 \notag \\ & \qquad \qquad \Downarrow \notag \\ &s_3:resultant(s_2,r_3,\gamma); \quad s_3=0 \quad(長いので省略) \notag \\ & \qquad \qquad \Downarrow \notag \\ &S_4:resultant(s_3,r_2,\beta); \quad s_4=0 \quad(長いので省略) \notag \\ & \qquad \qquad \Downarrow \notag \\ &s_5:resultant(s_4,r_1,\alpha); \quad s_5=0 \quad(長いので省略)\notag \\ \end{align}
\begin{align} V(x)&=x^{120}+27843750x^{110}-3422583389671875x^{100}+....\\ \notag \\ &=(x^{20}+17578125x^{10}+2471923828125) \times (x^{20}+84403125x^{10}+253125)\notag \\ &\times (x^{20}-13500x^{15}+53184375x^{10}-2209781250x^{5}+40766034375)\notag \\ &\times (x^{20}+13500x^{15}+53184375x^{10}+2209781250x^{5}+40766034375)\notag \\ &\times (x^{20}-4500x^{15}+10996875x^{10}-13352343750x^{5}+7246753846875)\notag \\ &\times (x^{20}+4500x^{15}+10996875x^{10}+13352343750x^{5}+7246753846875) \\ \end{align}
\begin{align} G(x)&=x^{20}+84403125x^{10}+253125\\ \end{align}
\begin{align} factor&(f(x),G(v)) \notag \\ &=\frac{1}{29387235057699395634222299784535217285156250000} \notag \\ &\times (257360625x+124v^{16}+10465993125v^6) \notag \\ &\times (1887311250x+281v^{16}-50v^{11}+23717244750v^6-3997389375v) \notag \\ &\times (1887311250x+281v^{16}+50v^{11}+23717244750v^6+3997389375v) \notag \\ &\times (5661933750x-2207v^{16}-75v^{11}-186277658625v^6-7411567500v)\notag \\ &\times (5661933750x-2207v^{16}+75v^{11}-186277658625v^6+7411567500v) \\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)