\begin{align} \setCounter{13} x_1&=\frac{2207 {{v}^{16}}-75 {{v}^{11}}+186277658625 {{v}^{6}}-7411567500 v}{5661933750} \notag \\ &........ \notag \\ x_5&=-\frac{124 {{v}^{16}}+10465993125 {{v}^{6}}}{257360625} \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} \alpha=\frac{2207 {{v}^{16}}-75 {{v}^{11}}+186277658625 {{v}^{6}}-7411567500 v}{5661933750} \\ \beta=-\frac{281 {{v}^{16}}-50 {{v}^{11}}+23717244750 {{v}^{6}}-3997389375 v}{1887311250} \\ \gamma=-\frac{124 {{v}^{16}}+10465993125 {{v}^{6}}}{257360625} \\ \delta=-\frac{281 {{v}^{16}}+50 {{v}^{11}}+23717244750 {{v}^{6}}+3997389375 v}{1887311250} \\ \epsilon=\frac{2207 {{v}^{16}}+75 {{v}^{11}}+186277658625 {{v}^{6}}+7411567500 v}{5661933750} \\ \end{array} \right. \\ \end{align}
\begin{align} &v=\alpha+2\beta+3\gamma+4\delta+5\epsilon \\ \notag \\ &\left\{ \begin{array}{l} \sigma_1(v)=v_1=v \\ \sigma_2(v)=v_2=-\frac{61 {{v}^{16}}}{113238675}-\frac{{{v}^{11}}}{25164150}-\frac{228826127 {{v}^{6}}}{5032830}-\frac{814329 v}{335522} \\ \qquad ........\\ \sigma_8(v)=v_8=-\frac{233 {{v}^{16}}}{1132386750}-\frac{{{v}^{11}}}{75492450}-\frac{29134601 {{v}^{6}}}{1677610}-\frac{51841 v}{167761} \\ \qquad ........\\ \sigma_{119}(v)=v_{119}=-\frac{61 {{v}^{16}}}{113238675}+\frac{{{v}^{11}}}{25164150}-\frac{228826127 {{v}^{6}}}{5032830}+\frac{814329 v}{335522} \\ \sigma_{120}(v)=v_{120}=-v \\ \end{array} \right. \\ \end{align}
\begin{align} \notag \\ & G(v_i)=0 \quad [ \ i=\{1,8,18,23,27,36,38,45,53,58, \\ &\qquad \qquad \qquad \qquad 63,68,76,83,85,94,98,103,113,120\} \ ] \notag \\ \end{align}
\begin{align} &Gal(F_0(v)/F_0)=F_{20} =\{\sigma_{1}, \sigma_{8},....,\sigma_{113}, \sigma_{120}\} \ : \ \ F_0(v)/F_0 のガロア群 \notag \\ \notag \\ &\therefore \quad ガロア群 F_{20} の組成列: \quad F_{20} \ \rhd \ \ D_5 \ \rhd \ C_5 \rhd \ {e} \\ \end{align}
\begin{align} \Bigl[F_{20}/D_5 \ \rhd \ e \ \Bigr] \ \rightarrow \ \Bigl[D_5/C_5 \ \rhd \ e \ \Bigr] \ \rightarrow \ \Bigl[C_5 \ \rhd \ e \ \Bigr] \end{align}
\begin{align} factor&(G(x),Z); \quad Z=\zeta^4+\zeta^3+\zeta^2+\zeta+1=0 \\ &\Downarrow \notag \\ G(x)&=(x^5-5655ζ^3+1335ζ^2-4320ζ-2160) \notag \\ & \times (x^5-1335ζ^3-5655ζ^2-6990ζ-3495) \notag \\ & \times (x^5+1335ζ^3+5655ζ^2+6990ζ+3495) \notag \\ & \times (x^5+5655ζ^3-1335ζ^2+4320ζ+2160) \\ \end{align}
\begin{align} g_0(x)&=x^5-5655ζ^3+1335ζ^2-4320ζ-2160 \\ &\quad g_0(x): \ minimal \ polynomial \ of \ v \notag \\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)