\begin{align} \setCounter{29} &\left\{ \begin{array}{l} h_0=(x-v_1), \quad h_1=(x-v_{113}), \quad h_2=(x-v_{38}) \\ h_3=(x-v_{53}), \quad h_4=(x-v_{94}) \\ \end{array} \right. \\ \notag \\ \end{align}
\( \qquad Lagrange \ resolvent \)
\begin{align} &\begin{bmatrix} t_0 \\ t_1 \\ t_2 \\ t_3 \\ t_4 \end{bmatrix} =\frac{1}{5} \begin{bmatrix} 1&1&1&1&1 \\ 1&\zeta&\zeta^2&\zeta^3&\zeta^4\\ 1&(\zeta^2)&(\zeta^2)^2&(\zeta^2)^3&(\zeta^2)^4\\ 1&(\zeta^3)&(\zeta^3)^2&(\zeta^3)^3&(\zeta^3)^4\\ 1&(\zeta^4)&(\zeta^4)^2&(\zeta^4)^3&(\zeta^4)^4 \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} \\ \notag \\ &\qquad \qquad \bbox[#00FFFF]{ Z=\zeta^4+\zeta^3+\zeta^2+\zeta+1=0 } \notag \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} t_0 \ \in \ F_1[x] \\ \{t_1,t_2,t_3,t_4\} \ \in \ F_1(v)[x] \end{array} \right. \ \Longrightarrow \ \left\{ \begin{array}{l} B_1=a_1^5-A_1=0 \quad A_1 \in F_0 \\ \{\tilde{t_1},\tilde{t_2},\tilde{t_3},\tilde{t_4} \} \ \in \ F_1[x]=F_0(a_1)[x] \end{array} \right. \\ \notag \\ \end{align}
\begin{align} &\begin{bmatrix} \tilde{h_0}\\ \tilde{h_1} \\ \tilde{h_2}\\ \tilde{h_3}\\ \tilde{h_4} \end{bmatrix} = \begin{bmatrix} 1&1&1&1&1 \\ 1&\zeta^4&(\zeta^2)^4&(\zeta^3)^4&(\zeta^4)^4\\ 1&\zeta^3&(\zeta^2)^3&(\zeta^3)^3&(\zeta^4)^3\\ 1&\zeta^2&(\zeta^2)^2&(\zeta^3)^2&(\zeta^4)^2\\ 1&\zeta^1&(\zeta^2)&(\zeta^3)&(\zeta^4) \end{bmatrix} \cdot \begin{bmatrix} t_0\\ \tilde{t_1} \\ \tilde{t_2} \\ \tilde{t_3} \\ \tilde{t_4} \end{bmatrix} \\ \notag \\ &g_0(x)=h_0 \cdot h_1 \cdot h_2 \cdot h_3 \cdot h_4 \quad \in \ F_0(v)[x] \\ &\qquad=(x-v_{1})(x-v_{34})(x-v_{65})(x-v_{91})(x-v_{97}) \notag \\ &\qquad \Downarrow \notag \\ &\left\{ \begin{array}{l} g_0(x)=\tilde{h_0}\cdot \tilde{h_1} \cdot \tilde{h_2}\cdot \tilde{h_3}\cdot \tilde{h_4} \ \in \ F_1[x] \\ g_1(x) \equiv \tilde{h_0} \ \in \ F_1[x] \end{array} \right. \\ \end{align}
\begin{align} &t_0=x, \ t_1=0, \ t_2=0, \ t_3=0, \ t_4=-v\\ \end{align}
\begin{align} &\left\{ \begin{array}{l} A_1=t_4^5=-5655\zeta^3+1335\zeta^2-4320\zeta-2160 \ \in F_0\\ a_1=\sqrt[5]{A_1} \ \in F_1=F_0(a_1)\\ B_1=a_1^5-A_1=a_1^5+5655\zeta^3-1335\zeta^2+4320\zeta+2160\\ \end{array} \right. \\ \end{align}
\begin{align} &\tilde{t_1}=0, \ \tilde{t_2}=0, \ \tilde{t_3}=0, \ \tilde{t_4}=a_1 \\ &\qquad \Downarrow \notag \\ &\tilde{h_0}=t_0+\tilde{t_1}+\tilde{t_2}+\tilde{t_3}+\tilde{t_4}=x+a_1 \\ &\qquad \Downarrow \notag \\ &g_1(x) \equiv x+a_1 \quad \rightarrow \quad \therefore v=-a_1\\ \end{align}
\begin{align} &\left\{ \begin{array}{l} \alpha=\frac{-a_1}{5}( {{\zeta }^{3}}-3 {{\zeta }^{2}}-7v \zeta -6) \\ \beta= \frac{a_1}{5}(4 {{\zeta }^{3}}+3 {{\zeta }^{2}}-3 v \zeta -4) \\ \gamma= \frac{-a_1}{5}( {{\zeta }^{3}}+7 {{\zeta }^{2}}+8 v \zeta +4)\\ \delta= \frac{-a_1}{5}(6 {{\zeta }^{3}}+7 {{\zeta }^{2}}+3 v \zeta - 1)\\ \epsilon=\frac{a_1}{5}(4 {{\zeta }^{3}}+8 {{\zeta }^{2}}+7 v \zeta +1) \\ \end{array} \right. \\ \end{align}
1のp乗根 | 拡大次数 \(n_1\) | 方程式 | 拡大次数 \(n_2\) | 総合拡大次数 \(n_1 \times n_2\) | |
---|---|---|---|---|---|
例題1 | \(\omega\) | 2 | \(x^3+3x+1\) | 6 | 12 |
例題2 | \(\omega\) | 2 | \(x^3-3x+1\) | 3 | 6 |
例題3 | \(\zeta_5\) | 4 | \(x^5-10x^3+5x^2+10x+1\) | 5 | 20 |
例題4 | \(\omega\) | 2 | \(x^4+4x+2\) | 24 | 48 |
補足5-1 | \(\omega\) | 2 | \(x^3-2\) | \(\bbox[#FFE0EB]{3}\) | \(\bbox[#FFFF00]{6}\) |
補足5-2 | \(\zeta_5\) | 4 | \(x^5-3\) | \(\bbox[#FFE0EB]{5}\) | \(\bbox[#FFFF00]{20}\) |
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)