Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} f(x)&=(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)= x^4+4x+2=0 \qquad \in F_0[x] \\ \end{align}
\begin{align} &f(x)=x^4+4x+2 =(x-\alpha)(x-\beta)(x-\gamma)(x-\delta) \\ \notag \\ &\left\{ \begin{array}{l} f(x)=(x-\alpha)q_1(x)+r_1 \\ q_1(x)=x^3+{{x}^{2}}\alpha+x {{\alpha }^{2}}+ {{\alpha }^{3}} +4\\ r_1={{\alpha }^{4}}+4 \alpha +2 \end{array} \right.\\ \notag \\ &\left\{ \begin{array}{l} q_1(x)=(x-\beta)q_2(x)+r_2 \\ q_2(x)={{x}^{2}}+x\, \left( \beta +\alpha \right)+{{\beta }^{2}} +\alpha \beta +{{\alpha }^{2}} \\ r_2= {{\beta }^{3}}+\alpha {{\beta }^{2}}+{{\alpha }^{2}} \beta +{{\alpha }^{3}}+4 \end{array} \right.\\ \notag \\ &\left\{ \begin{array}{l} q_2(x)=(x-\gamma)q_3(x)+r_3 \\ q_3(x)=x+\gamma +\beta +\alpha \\ r_3= {{\gamma }^{2}}+\left( \beta +\alpha \right) \gamma +{{\beta }^{2}}+\alpha \beta +{{\alpha }^{2}}\\ \end{array} \right.\\ \notag \\ &\left\{ \begin{array}{l} q_3(x)=(x-\delta)q_4(x)+r_4 \\ q_4(x)=1 \\ r_4=\delta +\gamma +\beta +\alpha \\ \end{array} \right.\\ \end{align}
\begin{align} &\left\{ \begin{array}{l} &f(\alpha)=0 \ \Rightarrow \ r_1={{\alpha }^{4}}+4 \alpha +2=0 \\ &q_1(\beta)=0 \ \Rightarrow \ r_2={{\beta }^{3}}+\alpha {{\beta }^{2}}+{{\alpha }^{2}} \beta +{{\alpha }^{3}}+4=0 \\ &q_2(\gamma)=0 \ \Rightarrow \ r_3= {{\gamma }^{2}}+\left( \beta +\alpha \right) \gamma +{{\beta }^{2}}+\alpha \beta +{{\alpha }^{2}}=0\\ &q_3(\delta)=0 \ \Rightarrow \ r_4=\delta +\gamma +\beta +\alpha=0 \\ \end{array} \right.\\ \end{align}
\begin{align} v &\equiv 1 \cdot \alpha +2 \cdot \beta +3 \cdot \gamma +4 \cdot \delta \quad: \ primitive \ element \\ \end{align}
\begin{align} \sigma_{10}=\begin{pmatrix} 1&2&3&4 \\ 2&3&4&1 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma&\delta \\ \beta &\gamma&\delta&\alpha \end{pmatrix} \equiv \ \bbox[#FFFF00]{ [2,3,4,1] }\\ \notag \\ \end{align}
\begin{align} \sigma_{1}=&[1,2,3,4] & \sigma_{2}=&[1,2,4,3] & \sigma_{3}=&[1,3,2,4] & \sigma_{4}=&[1,3,4,2] \notag \\ \sigma_{5}=&[1,4,2,3] & \sigma_{6}=&[1,4,3,2] & \sigma_{7}=&[2,1,3,4] & \sigma_{8}=&[2,1,4,3] \notag \\ \sigma_{9}=&[2,3,1,4] & \sigma_{10}=& \bbox[#FFFF00]{[2,3,4,1] } & \sigma_{11}=&[2,4,1,3] & \sigma_{12}=&[2,4,3,1] \\ \sigma_{13}=&[3,1,2,4] & \sigma_{14}=&[3,1,4,2] & \sigma_{15}=&[3,2,1,4] & \sigma_{16}=&[3,2,4,1] \notag \\ \sigma_{17}=&[3,4,1,2] & \sigma_{18}=&[3,4,2,1] & \sigma_{19}=&[4,1,2,3] & \sigma_{20}=&[4,1,3,2] \notag \\ \sigma_{21}=&[4,2,1,3] & \sigma_{22}=&[4,2,3,1] & \sigma_{23}=&[4,3,1,2] & \sigma_{24}=&[4,3,2,1] \notag \\ \end{align}
\begin{align} \sigma_9(v)&=\sigma_9(\alpha+2\beta+3\gamma+4\delta) =\sigma_9(\alpha)+2\sigma_9(\beta)+3\sigma_9(\gamma)+4\sigma_9(\delta) =\beta+2\gamma+3\alpha+4\delta \notag \\ \end{align}
\begin{align} \sigma_{1}(v)&=4 \delta +3 \gamma +2 \beta +\alpha \equiv v_1 & \sigma_{2}(v)&=3 \delta +4 \gamma +2 \beta +\alpha \equiv v_2 \\ \sigma_{3}(v)&=4 \delta +2 \gamma +3 \beta +\alpha \equiv v_3 & \sigma_{4}(v)&=3 \delta +2 \gamma +4 \beta +\alpha \equiv v_4 \notag \\ \sigma_{5}(v)&=2 \delta +4 \gamma +3 \beta +\alpha \equiv v_{5} & \sigma_{6}(v)&=2 \delta +3 \gamma +4 \beta +\alpha \equiv v_{6} \notag \\ \sigma_{7}(v)&=4 \delta +3 \gamma +\beta +2 \alpha \equiv v_{7} & \sigma_{8}(v)&=3 \delta +4 \gamma +\beta +2 \alpha \equiv v_{8} \notag \\ \sigma_{9}(v)&=4 \delta +2 \gamma +\beta +3 \alpha \equiv v_{9} & \sigma_{10}(v)&=3 \delta +2 \gamma +\beta +4 \alpha \equiv v_{10} \notag \\ \sigma_{11}(v)&=2 \delta +4 \gamma +\beta +3 \alpha \equiv v_{11} & \sigma_{12}(v)&=2 \delta +3 \gamma +\beta +4 \alpha \equiv v_{12} \notag \\ \sigma_{13}(v)&=4 \delta +\gamma +3 \beta +2 \alpha \equiv v_{13} & \sigma_{14}(v)&=3 \delta +\gamma +4 \beta +2 \alpha \equiv v_{14} \notag \\ \sigma_{15}(v)&=4 \delta +\gamma +2 \beta +3 \alpha \equiv v_{15} & \sigma_{16}(v)&=3 \delta +\gamma +2\beta +4 \alpha \equiv v_{16} \notag \\ \sigma_{17}(v)&=2 \delta +\gamma +4 \beta +3 \alpha \equiv v_{17} & \sigma_{18}(v)&=2 \delta +\gamma +3 \beta +4 \alpha \equiv v_{18} \notag \\ \sigma_{19}(v)&=\delta +4 \gamma +3 \beta +2 \alpha \equiv v_{19} & \sigma_{20}(v)&=\delta +3 \gamma +4 \beta +2 \alpha \equiv v_{20} \notag \\ \sigma_{21}(v)&=\delta +4 \gamma +2 \beta +3 \alpha \equiv v_{21} & \sigma_{22}(v)&=\delta +3 \gamma +2 \beta +4 \alpha \equiv v_{22} \notag \\ \sigma_{23}(v)&=\delta +2 \gamma +4 \beta +3 \alpha \equiv v_{23} & \sigma_{24}(v)&=\delta +2 \gamma +3 \beta +4 \alpha \equiv v_{24} \notag \\ \end{align}