Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} & t_0=x^{12}-80x^8+2720x^6+11840x^4+587520x^2+1193216 \\ \notag \\ & t_1=\Biggl[ -\frac{1842286585 {{v}^{22}}}{575477552142843904}+...-\frac{24232754108316500}{17562181156703}\Biggr]x^6 \ +.... \\ \end{align}
\begin{align} &cd_m=\Biggl[ -\frac{1842286585 {{v}^{22}}}{575477552142843904}+...-\frac{24232754108316500}{17562181156703}\Biggr] \ \in \ F_0(v) \\ &cd_m^{-1}=\Biggl[ \frac{368457317 {{v}^{22}}}{2015368425808410779320320}+...+\frac{242327541083165}{3075208169263322112} \Biggr] \\ \notag \\ &q_1(x)= cd_m^{-1} \cdot t_1={{x}^{6}}-\frac{232 {{x}^{2}}}{5}+432 \ \in \ F_0[x]\\ \end{align}
\begin{align} &cd_m^2=-17510400 \equiv A_1 \ \in \ F_0 \\ \notag \\ &\left\{ \begin{array}{l} B_1(x)=x^2-A_1=0 \\ a_1 \equiv \sqrt{A_1} =\sqrt{-17510400} \ \in \ \bbox[#FFFF00]{ F_1 \equiv F_0(a_1) }\\ \end{array} \right. \\ \notag \\ &t_1=cd_m \cdot q_1(x) \ \in F_0(v)[x] \quad \Rightarrow \quad \tilde{t_1}=a_1 \cdot q_1(x) \ \in F_1[x] \\ \end{align}
[Step 2] The binomial equation \(B_1(x)=0\) and the new adjunction \(a_1\)
\begin{align}
&\left\{
\begin{array}{l}
t_1=cd_m \cdot q_1(x) \ \in F_0(v)[x]\\
\\
cd_m \ \in F_0(v) \\
q_1(x) \ \in F_0[x]\\
\end{array}
\right.
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
\tilde{t_1}=a_1 \cdot q_1(x) \ \in F_1[x] \\
\\
B_1(x)=x^2-A_1=0 \\
a_1=\sqrt {A_1} \ \in F_0(a_1) \equiv F_1\\
\end{array}
\right. \notag \\
\end{align}
[Step 3] ILRT (Inverse Lagrange Resolvent Transformation)
\begin{align}
&\begin{bmatrix}
\tilde{h_0} \\
\tilde{h_1 }
\end{bmatrix}
=
\begin{bmatrix}
1&1 \\
1&-1
\end{bmatrix}
\cdot
\begin{bmatrix}
t_0 \\
\tilde{t_1}
\end{bmatrix}
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
g_0(x)=\tilde{h_0} \cdot \tilde{h_1} \\
g_1(x) \equiv \tilde{h_0} \ \in \ F_1[x]
\end{array}
\right. \\
\end{align}
\begin{align} &\tilde{h_0}=t_0+\tilde{t_1} \equiv g_1(x) \qquad deg(g_1(x))=12 \notag \\ \notag \\ &g_1(x)= x^{12}-80x^8+2720x^6+11840x^4+587520x^2+1193216 \notag \\ &\qquad \qquad +a_1({{x}^{6}}-\frac{232 {{x}^{2}}}{5}+432 ) \quad \in \ F_1[x]\\ \end{align}
\begin{align} &\left\{ \begin{array}{l} cd_m^{-1}=c_0+c_1v+c_2v^2+....+c_{23}v^{23} \\ cd_m^{-1} \cdot cd_m=1 \\ \end{array} \right.\\ \end{align}
\begin{align} \notag \\ cd_m&=-\frac{1842286585 {{v}^{22}}}{575477552142843904}+\frac{22200475 {{v}^{20}}}{17983673504463872}+\frac{35316027575 {{v}^{18}}}{71934694017855488} +..... \notag \\ \notag \\ &-\frac{10880639453426075 {{v}^{4}}}{140497449253624}-\frac{22629495387627730 {{v}^{2}}}{17562181156703}-\frac{24232754108316500}{17562181156703} \notag \\ \notag \\ cd_m^{-1}&=\frac{368457317 {{v}^{22}}}{2015368425808410779320320}-\frac{888019 {{v}^{20}}}{12596052661302567370752}+....\notag \\ \notag \\ &+\frac{435225578137043 {{v}^{4}}}{98406661416426307584}+\frac{2262949538762773 {{v}^{2}}}{30752081692633221120}+\frac{242327541083165}{3075208169263322112} \notag \\ \end{align}