Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} &V_4 =\{\rho_{1},\rho_{8},\rho_{17},\rho_{24}\}, \quad N=\{\rho_{1},\rho_{8}\} \notag \\ &Gal(F_3/F_2)=V_4/N \cong C_2 = \{\kappa_1,\kappa_2\}, \quad \kappa_1= \{\rho_{1},\rho_{8}\}, \ \kappa_2= \{\rho_{17},\rho_{24}\} \notag \\ \end{align}
[Step 1] LRT (Lagrange Resolvent Transformation)
\begin{align}
& h_0=\prod_{\rho_i \in \ \kappa_1}\rho_i(x-v)=(x-v_1)(x-v_8) \\
& h_1=\prod_{\rho_i \in \ \kappa_2}\rho_i(x-v)=(x-v_{17})(x-v_{24}) \notag \\
\notag \\
&\begin{bmatrix} t_0 \\ t_1 \end{bmatrix}
=\frac{1}{2}
\begin{bmatrix} 1&1 \\ 1&-1 \end{bmatrix}
\cdot
\begin{bmatrix} h_0 \\ h_1 \end{bmatrix}
\qquad (\ t_1:\ \text{Lagrange resolvent}\ )
\end{align}
\begin{align} &\left\{ \begin{array}{l} h_0=x^2+ca_1x+ca_0 \quad\ &ca_1=-(v_1+v_8),\ \ ca_0=v_1\cdot v_8\\ h_1=x^2+cb_1x+cb_0 \quad\ &cb_1=-(v_{17}+v_{24}),\ \ cb_0=v_{17}\cdot v_{24} \end{array} \right.\\ \end{align}
\(\ \) | \(\kappa_j(v_1,v_8)\) | \(\kappa_j(v_{17},v_{24})\) |
---|---|---|
\(\kappa_1\) | \(v_{1},v_{8}\) | \(v_{17},v_{24}\) |
\(\kappa_2\) | \(v_{17},v_{24}\) | \(v_{1},v_{8}\) |
\(\ \) | \(\kappa_j(ca_i)\) | \(\kappa_j(cb_i)\) |
---|---|---|
\(\kappa_1\) | \(ca_i\) | \(cb_i\) |
\(\kappa_2\) | \(cb_i\) | \(ca_i\) |
\(\ \) | \(\kappa_j(h_0)\) | \(\kappa_j(h_1)\) |
---|---|---|
\(\kappa_1\) | \(h_0\) | \(h_1\) |
\(\kappa_2\) | \(h_1\) | \(h_0\) |
\( \ \) | \(\kappa_j(cc_i=\frac{1}{2}(ca_i+cb_i))\) | \(\kappa_j(cd_i=\frac{1}{2}(ca_i-cb_i))\) |
---|---|---|
\(\kappa_1\) | \(cc_i=\frac{1}{2}(ca_i+cb_i)\) | \(cd_i=\frac{1}{2}(ca_i-cb_i)\) |
\(\kappa_2\) | \(cc_i=\frac{1}{2}(cb_i+ca_i)\) | \(-cd_i=\frac{1}{2}(cb_i-ca_i)\) |
\(\ \) | \(\kappa_j(t_0)\) | \(\kappa_j(t_1)\) | \(\kappa_j(cd_i^2)\) |
---|---|---|---|
\(\kappa_1\) | \(t_0\) | \(t_1\) | \(cd_i^2\) |
\(\kappa_2\) | \(t_0\) | \(-t_1\) | \(cd_i^2\) |
\begin{align} & t_0= x^2+\frac{19 {a_1} {{a}_{2}^{2}} \omega }{865280}+\frac{45 {{a}_{2}^{2}} \omega }{1352}-\frac{4 {a_2} \omega }{13}+\frac{9 {a_1} {{a}_{2}^{2}}}{1730560}+\frac{603 {{a}_{2}^{2}}}{5408}-\frac{19 {a_2}}{26} \ \in F_2[x] \\ & t_1=\Biggl[-\frac{5 {a_1} {{a}_{2}^{2}} {{v}^{3}} \omega }{183028352}+\frac{1215 {{a}_{2}^{2}} {{v}^{3}} \omega }{5719636} +.....+\frac{49 {a_1} v}{338440}-\frac{21371 v}{8461}\Biggr]x \ \in F_2(v)[x] \end{align}
\begin{align} \bbox[#FFFF00]{ cd_1^2}&=\frac{23 {a_1} {{a}_{2}^{2}} \omega }{324480}+\frac{63 {{a}_{2}^{2}} \omega }{338}-\frac{8 {a_2} \omega }{13}+\frac{{a_1} {{a}_{2}^{2}}}{324480}+\frac{135 {{a}_{2}^{2}}}{338}-\frac{32 {a_2}}{13} \equiv \bbox[#FFFF00]{ A_3 } \ \in \ F_2 \end{align}
[Step 2] Binomial \(B_3(x)=0\) and the new adjunction \(a_3\)
\begin{align}
&\left\{
\begin{array}{l}
cd_1 \in F_2(v),\\[2pt]
t_1=cd_1\cdot x \in F_2(v)[x]
\end{array}
\right.
\ \Longrightarrow\
\left\{
\begin{array}{l}
B_3(x)=x^2-A_3=0,\\
a_3\equiv \sqrt{A_3}\in F_2(a_3)\equiv F_3,\\
\tilde t_1=a_3\cdot x \in F_3[x]
\end{array}
\right.
\end{align}
[Step 3] ILRT (Inverse Lagrange Resolvent Transformation)
\begin{align}
\begin{bmatrix}\tilde h_0\\ \tilde h_1\end{bmatrix}
=
\begin{bmatrix}1&1\\ 1&-1\end{bmatrix}
\cdot
\begin{bmatrix}t_0\\ \tilde t_1\end{bmatrix}
\quad \Rightarrow \quad
\left\{
\begin{array}{l}
g_2(x)=\tilde h_0\cdot \tilde h_1,\\
g_3(x)\equiv \tilde h_0 \in F_3[x]
\end{array}
\right.
\end{align}
\begin{align} &\tilde h_0=t_0+\tilde t_1 \equiv g_3(x) \in F_3[x]\\ &g_3(x)=x^2+a_3 x \notag \\ &\qquad +\biggl[ \frac{19 {a_1} {{a}_{2}^{2}} \omega }{865280}+\frac{45 {{a}_{2}^{2}} \omega }{1352}-\frac{4 {a_2} \omega }{13} +\frac{9 {a_1} {{a}_{2}^{2}}}{1730560}+\frac{603 {{a}_{2}^{2}}}{5408}-\frac{19 {a_2}}{26} \biggr] \end{align}