Techniques of Solving Equations à la Galois


Profile
Name: scruta \(\quad\) Daily life: mowing

Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14

\(\qquad\)


Contact

mailaddress



Copyright © 2023 scruta

Chapter3

    Exhausting! Packed with Cyclic Extensions!

\(\qquad \qquad \qquad f(x)=x^4+4x+2 \qquad Galois \ Group:S_4\)

\( \quad \)

▶ Page    1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12           ▶ Sample Program

\(\quad \)
home \(\quad \)

\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)

[3-15] Computing the roots of \(f(x)\)

\(\nextSection\)
At last we have obtained the minimal polynomial \(g_4(x)\) of \(v\). Since \(g_4(x)\) is linear in \(x\), solving \(g_4(x)=0\) is immediate, and its root gives the desired value of \(v\).

\begin{align} &g_4(x)= x+\frac{{a_3}}{2}+{a_4} \\ &g_4(x)=0 \quad \Longrightarrow \quad \therefore \ v=-\frac{{a_3}}{2}-{a_4} \\ \end{align}

Substituting this value of \(v\) into (4.6–9) yields the four roots of \(f(x)\). We now illustrate the concrete computation. In (15.3), \(\alpha\) is written as a polynomial in \(v\).
Using the computer algebra system Maxima, \(\alpha\) can be computed by the commands below. In (15.4), we reduce \(\alpha\) modulo \(g_4(v)\). Because \(g_4(v)\) is linear in \(v\), taking the remainder is equivalent to substituting the value of \(v\) from (15.2) into (15.3).
From (15.4) onward, we reduce by the four binomials defining the cyclic tower of extensions. Finally, reducing modulo \(\Omega\) as in (15.5) gives the final result (15.6).

\begin{align} &\alpha=\frac{801167701943012874015343807 }{10126546386824616812436636833146824818688}{{v}^{23}}\notag \\ &\quad +\frac{51207699710669004924125}{199474971178044691573821786887815168} {{v}^{22}} \notag \\ \notag \\ &\qquad .............................. \notag \\ \notag \\ &\quad -\frac{1279063375083309131586881879157101 }{11886064249859873624873982160300416}v \notag \\ &\quad -\frac{2718803338720300088760700554765}{3043746508454051079922817793088} \\ \notag \\ \end{align}

\begin{align} & \qquad \Downarrow \notag \\ \notag \\ &\alpha:remainder(\alpha,g_4(v),v)$ & &\leftarrow \quad ( \ mod \ g_4(v) \ ) \\ &\alpha:remainder(\alpha,B_4,a_4)$ & &\leftarrow \quad ( \ mod \ B_4(a_4) \ ) \notag \\ &\alpha:remainder(\alpha,B_3,a_3)$ & &\leftarrow \quad ( \ mod \ B_3(a_3) \ ) \notag \\ &\alpha:remainder(\alpha,B_2,a_2)$ & &\leftarrow \quad ( \ mod \ B_2(a_2) \ ) \notag \\ &\alpha:remainder(\alpha,B_1,a_1)$ & &\leftarrow \quad ( \ mod \ B_1(a_1) \ ) \notag \\ &\alpha:remainder(\alpha,Ω,ω); & &\leftarrow \quad ( \ mod \ \Omega \ ) \\ \end{align}

\begin{align} &\Rightarrow \ \frac{1}{166133760}\Bigl[\left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}+83066880 {a_4}+20766720 {a_3} \Bigr] \\ \end{align}

The remaining three roots are obtained in exactly the same way. The final expressions of the four roots of \(f(x)\) are as follows.

\begin{align} &f(x)=x^4+4x+2 =(x-\alpha)(x-\beta)(x \ -\gamma)(x \ -\delta) \\ \end{align}

\begin{align} \notag \\ &\alpha=\frac{1}{166133760}\Bigl[\left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}+83066880 {a_4}+20766720 {a_3} \Bigr] \\ \notag \\ &\beta=-\frac{1}{166133760}\Bigl[ \left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}+83066880 {a_4}-20766720 {a_3} \Bigr] \\ \notag \\ &\gamma=-\frac{1}{166133760}\Bigl[\left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}-83066880 {a_4}+20766720 {a_3} \Bigr] \\ \notag \\ &\delta=\frac{1}{166133760}\Bigl[ \left( \left( {a_1}+129600\right) \, {{a}_{2}^{2}} {a_3} {a_4}+599040 {a_2} {a_3} {a_4}\right) \omega \notag \\ &\quad +\left( 69120-22 {a_1}\right) \, {{a}_{2}^{2}} {a_3} {a_4}-199680 {a_2} {a_3} {a_4}-83066880 {a_4}-20766720 {a_3} \Bigr] \\ \end{align}



We conclude by reviewing the cyclic tower computed so far in Fig. 3-6 and listing the associated binomials for each extension.

Solution procedure

\begin{align} &\left\{ \begin{array}{l} \varOmega = \omega^2+ \omega +1 =0 \\ B_1(x)=x^2-A_1=0 \qquad a_1=\sqrt{A_1} \\ B_2(x)=x^3-A_2=0 \qquad a_2=\sqrt[3]{A_2}\\ B_3(x)=x^2-A_3=0 \qquad a_3=\sqrt{A_3} \\ B_4(x)=x^2-A_4=0 \qquad a_4=\sqrt{A_4} \\ \end{array} \right. \\ \end{align}


\begin{align} & A_1=-17510400 \\ & A_2= \frac{14 {a_1} \omega }{27}+2304 \omega +\frac{89 {a_1}}{135}-1088 \notag \\ & A_3=\frac{23 {a_1} {{a}_{2}^{2}} \omega }{324480}+\frac{63 {{a}_{2}^{2}} \omega }{338} -\frac{8 {a_2} \omega }{13}+\frac{{a_1} {{a}_{2}^{2}}}{324480} +\frac{135 {{a}_{2}^{2}}}{338}-\frac{32 {a_2}}{13} \notag \\ & A_4= -\frac{11 {a_1} {{a}_{2}^{2}} \omega }{2595840} +\frac{9 {{a}_{2}^{2}} \omega }{676}+\frac{2 {a_2} \omega }{13} -\frac{23 {a_1} {{a}_{2}^{2}}}{5191680}-\frac{63 {{a}_{2}^{2}}}{5408}+\frac{3 {a_2}}{26} \notag \\ \end{align}


\begin{align} g_0(x)=& \ x^{24}-160x^{20}++5440x^{18}+30080x^{16}+739840x^{14} \notag \\ & +25400832x^{12} -29593600x^{10}+1520414720x^8 \notag \\ &+35532554240x^6 +411134296064x^4+700091596800x^2 \notag \\ & +4691625312256\\ \notag \\ &\qquad \Downarrow \notag \\ \notag \\ g_4(x)=&\ x+\frac{{a_3}}{2}+{a_4} \qquad \therefore \ v=-\frac{{a_3}}{2}-{a_4} \\ \end{align}


This completes the solution procedure via Galois theory. (It was a long computation.)

\(\quad \)
home \(\quad \)