Techniques of Solving Equations à la Galois


Profile
Name: scruta \(\quad\) Daily life: mowing

Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14

\(\qquad\)


Contact

mailaddress



Copyright © 2023 scruta

Chapter3

    Exhausting! Packed with Cyclic Extensions!

\(\qquad \qquad \qquad f(x)=x^4+4x+2 \qquad Galois \ Group:S_4\)

\( \quad \)

▶ Page    1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12           ▶ Sample Program

\(\quad \)
home \(\quad \)

\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)

[3-10] Computation for \(F_2/F_1\): finding the minimal polynomial \(g_2(x)\) (1)

\(\nextSection\)

\(\qquad \qquad \)
Solution procedure

The computations in this section correspond to the green part of Fig. 3-3.
The Galois group applied here is the quotient group \(A_4/V_4\), which is the cyclic group of order 3, \(C_3\). Writing \(C_3\cong \{\kappa_1,\kappa_2,\kappa_3\}\), each \(\kappa_i\) is a coset and hence consists of 4 elements of \(S_4\).

[Table 3-8] Multiplication table of \(\kappa_i \circ \kappa_j\)
\( i \backslash j \)\(\kappa_1\)\(\kappa_2\)\(\kappa_3\)
\(\kappa_1\)\(\kappa_1\)\(\kappa_2\)\(\kappa_3\)
\(\kappa_2\)\(\kappa_2\)\(\kappa_3\)\(\kappa_1\)
\(\kappa_3\)\(\kappa_3\)\(\kappa_1\)\(\kappa_2\)


\begin{align} &A_4/V_4 \cong C_3 \equiv \{\kappa_1,\kappa_2,\kappa_3\} \\ \notag \\ &\left\{ \begin{array}{l} \kappa_1\equiv \{\rho_{1},\rho_{8},\rho_{17},\rho_{24}\} \\ \kappa_2\equiv \{\rho_{4},\rho_{12},\rho_{13},\rho_{21}\} \\ \kappa_3\equiv \{\rho_{5},\rho_{9},\rho_{16},\rho_{20}\} \\ \end{array} \right.\\ \end{align}

Since the elements of the quotient group \(\{\kappa_1,\kappa_2,\kappa_3\}\) are given in (10.2), the polynomials \(\{h_0,h_1,h_2\}\) are defined as in (10.3).

[Step 1] LRT (Lagrange Resolvent Transformation)
\begin{align} &h_0=\prod_{\rho_i \in \ \kappa_1}\rho_i(x-v)=(x-v_1)(x-v_8)(x-v_{17})(x-v_{24}) \notag \\ &h_1=\prod_{\rho_i \in \ \kappa_2}\rho_i(x-v)=(x-v_4)(x-v_{12})(x-v_{13})(x-v_{21}) \\ &h_2=\prod_{\rho_i \in \ \kappa_3}\rho_i(x-v)=(x-v_5)(x-v_9)(x-v_{16})(x-v_{20}) \notag \\ \notag \\ &\begin{bmatrix} t_0 \\ t_1 \\ t_2 \end{bmatrix} =\frac{1}{3} \begin{bmatrix} 1&1&1 \\ 1&\omega&\omega^2\\ 1&(\omega^2)&(\omega^2)^2\\ \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix} \qquad \begin{array}{l} ( \ t_1: \ Lagrange \ resolvent \ )\\ \\ \Omega=\omega^2+\omega+1=0 \\ \end{array}\\ \end{align}



With this setup, we examine the polynomials \(\{h_0,h_1,h_2\}\) in \(x\) defined in (10.3) from the viewpoint of automorphisms.
As shown in (10.5), write the coefficients of \(\{h_0,h_1,h_2\}\) as \(\{ \ ca_i,cb_i,cc_i \ [i=0,1,2,3] \ \}\).
The coefficients \(\{ca_i,cb_i,cc_i\}\) are composed of the \(v_i\) belonging to \(\{v \kappa_1,v\kappa_2,v\kappa_3\}\), respectively, as in (10.6).

\begin{align} &\left\{ \begin{array}{l} h_0=x^4+ca_3x^3+ca_2x^2+ca_1x+ca_0 \\ h_1=x^4+cb_3x^3+cb_2x^2+cb_1x+cb_0\\ h_2=x^4+cc_3x^3+cc_2x^2+cc_1x+cc_0 \qquad \{ h_0,h_1,h_2 \}\ \in F_1(v)[x]\\ \end{array} \right.\\ \notag \\ &\quad ca_3=-(v_{1}+v_{8}+v_{17}+v_{24}), \quad cb_3=-(v_{4}+v_{12}+v_{13}+v_{21}), \notag \\ & \quad cc_3=-(v_{5}+v_{9}+v_{16}+v_{20}), \quad etc. \qquad \{ ca_i,cb_i,cc_i \} \ \in F_1(v) \\ \end{align}

[Table 3-9] Mapping \(\kappa_i(v\kappa_j)\)
\( \ \)\(\kappa_i(v \kappa_1)\)\(\kappa_i(v \kappa_2)\) \(\kappa_i(v \kappa_3)\)
\(\kappa_1\)
\(v_{1},v_{8},v_{17},v_{24}\) \(v_{4},v_{12},v_{13},v_{21}\) \(v_{5},v_{9},v_{16},v_{20}\)
\(\kappa_2\)
\(v_{4},v_{12},v_{13},v_{21}\) \(v_{5},v_{9},v_{16},v_{20}\) \(v_{1},v_{8},v_{17},v_{24}\)
\(\kappa_3\)
\(v_{5},v_{9},v_{16},v_{20}\) \(v_{1},v_{8},v_{17},v_{24}\) \(v_{4},v_{12},v_{13},v_{21}\)

From [Table 3-9] we see that the three groups \(\{v \kappa_1,v\kappa_2,v\kappa_3\}\) of the \(v_i\) do not mix under the automorphisms \(\{\kappa_1,\kappa_2,\kappa_3\}\). Therefore the coefficients \(\{ca_i,cb_i,cc_i\}\) of the polynomials \(h_0,h_1,h_2\) transform under \(\{\kappa_1,\kappa_2,\kappa_3\}\) as in Table 3-10. Likewise, the images of \(\{h_0,h_1,h_2\}\) under \(\{\kappa_1,\kappa_2,\kappa_3\}\) are summarized in Table 3-11.
[Table 3-10] Mapping \(\kappa_j(ca_i,cb_i,cc_i)\)
\( \ \)\(\kappa_j(ca_i)\)\(\kappa_j(cb_i)\)\(\kappa_j(cc_i)\)
\(\kappa_1\)\(ca_i\)\(cb_i\)\(cc_i\)
\(\kappa_2\)\(cb_i\) \(cc_i\)\(ca_i\)
\(\kappa_3\)\(cc_i\) \(ca_i\)\(cb_i\)




\(\quad \Rightarrow \quad \)
[Table 3-11] Images \(\kappa_j(h_i)\)
\( \ \)\(\kappa_j(h_0)\)\(\kappa_j(h_1)\)\(\kappa_j(h_2)\)
\(\kappa_1\)\(h_0\)\(h_1\) \(h_2\)
\(\kappa_2\)\(h_1\) \(h_2\)\(h_0\)
\(\kappa_3\)\(h_2\) \(h_0\) \(h_1\)

Next, the coefficients of the polynomials \(\{t_0,t_1,t_2\}\) produced by the Lagrange Resolvent Transformation in (10.4) are combinations of the coefficients \(\{ca_i,cb_i,cc_i\}\) as indicated in (10.7). Hence the images of \(\{t_0,t_1,t_2\}\) under \(\{\kappa_1,\kappa_2,\kappa_3\}\) are summarized in [Table 3-12].

\begin{align} &\left\{ \begin{array}{l} t_0=\frac{1}{3}(h_0+h_1+h_2)=x^{4}+\displaystyle\sum_{i=0}^{3} \frac{1}{3} (ca_i+cb_i+cc_i)x^i=x^{4}+\displaystyle\sum_{i=0}^{3} cd_i x^i \\ t_1=\frac{1}{3}(h_0+\omega h_1+\omega^2 h_2)=\displaystyle \sum_{i=0}^{3} \frac{1}{3} (ca_i+\omega cb_i+\omega^2 cc_i)x^i=\displaystyle \sum_{i=0}^{3} ce_i x^i \\ t_2=\frac{1}{3}(h_0+\omega^2 h_1+\omega h_2)=\displaystyle \sum_{i=0}^{3} \frac{1}{3} (ca_i+\omega^2 cb_i+\omega cc_i)x^i=\displaystyle \sum_{i=0}^{3} ck_i x^i \\ \end{array} \right.\\ \end{align}

[Table 3-12] Mapping \(\kappa_j(ca_i,cb_i,cc_i)\)
\( \ \)\(\kappa_j(cd_i)\)\(\kappa_j(ce_i)\)\(\kappa_j(ck_i)\)\(\kappa_j(t_0)\)\(\kappa_j(ce_i^3)\) \(\kappa_j(ck_i^3)\) \(\kappa_j(ce_i \cdot ck_l)\)
\(\kappa_1\)\(cd_i\)\(ce_i\)\(ck_i\) \(t_0\) \(ce_i^3\)\(ck_i^3\) \(ce_i \cdot ck_l\)
\(\kappa_2\)\(cd_i\) \(\omega^2 \cdot ce_i\)\(\omega \cdot ck_i\)\(t_0\) \(ce_i^3\)\(ck_i^3\) \(ce_i \cdot ck_l\)
\(\kappa_3\)\(cd_i\) \(\omega \cdot ce_i\)\(\omega^2 \cdot ck_i\) \(t_0\) \(ce_i^3\)\(ck_i^3\) \(ce_i \cdot ck_l\)
\(\qquad \)

From [Table 3-12] we see that \(t_0\) is invariant under all permutations by \(\{\kappa_1,\kappa_2,\kappa_3\}\). Hence \(t_0 \in F_1[x]\). The yellow-highlighted entries in [Table 3-12] show that \(\{ce_i^3, ck_i^3, ce_i \cdot ck_l\}\) are also invariant under \(\{\kappa_1,\kappa_2,\kappa_3\}\). Therefore \(\{ce_i^3, ck_i^3, ce_i \cdot ck_l\} \in F_1\) as well.

\begin{align} t_0 \ \in F_1[x], \qquad \{t_1,t_2\} \ \in F_1(v)[x], \qquad \{ce_i^3,ck_i^3,ce_i \cdot ck_l\} \ \in F_1 \\ \end{align}



[Supplement] Perhaps unnecessary, but here is how to obtain part of [Table 3-12], illustrated with the 3rd and 4th rows of the 3rd column.

\begin{align} \kappa_2(ce_i)&=\frac{1}{3} \kappa_2(ca_i+\omega cb_i+ \omega^2 cc_i)=\frac{1}{3} \biggl[ \kappa_2(ca_i)+\omega \kappa_2(cb_i)+ \omega^2 \kappa_2(cc_i)\frac{1}{3} \biggr] \notag \\ &=\frac{1}{3} ( cb_i+\omega cc_i +\omega^2 ca_i )= \frac{\omega^2}{3} (ca_i+\omega cb_i +\omega^2 cc_i)=\omega^2 ce_i \notag \\ \kappa_3(ce_i)&=\frac{1}{3} \kappa_3(ca_i+\omega cb_i+ \omega^2 cc_i)=\frac{1}{3} \biggl[\kappa_3(ca_i)+\omega \kappa_3(cb_i)+ \omega^2 \kappa_3(cc_i) \frac{1}{3} \biggr] \notag \\ &=\frac{1}{3} ( cc_i+\omega ca_i +\omega^2 cb_i )= \frac{\omega}{3} (ca_i+\omega cb_i +\omega^2 cc_i)=\omega ce_i \notag \\ \end{align}


\(\quad \)
home \(\quad \)