Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} \rho_{1}(v) &\equiv v_1=v \notag \\ \notag \\ \rho_{2}(v) &\equiv v_2=\frac{801167701943012874015343807}{2531636596706154203109159208286706204672}v^{23}-\frac{51207699710669004924125}{99737485589022345786910893443907584}v^{22} \notag \\ &\quad .......... \notag \\ &+\frac{4663968749846627680850109200993107}{2971516062464968406218495540075104}v+\frac{2718803338720300088760700554765}{1521873254227025539961408896544} \\ \notag \\ &\qquad \qquad .........\notag \\ \notag \\ \rho_{23}(v) &\equiv v_{23}=-\frac{801167701943012874015343807}{2531636596706154203109159208286706204672}v^{23}-\frac{51207699710669004924125}{99737485589022345786910893443907584}v^{22} \notag \\ &\quad .......... \notag \\ &-\frac{4663968749846627680850109200993107}{2971516062464968406218495540075104}v+\frac{2718803338720300088760700554765}{1521873254227025539961408896544} \notag \\ \notag \\ \rho_{24}(v) &\equiv v_{24}=-v \notag \\ \end{align}
\( i \backslash j \) | \(1 \) | \(2 \) | \(3 \) | \(4 \) | \(5 \) | \(6 \) | \(7 \) | \(8 \) | \(9 \) | \({10} \) | \({11} \) | \({12} \) | \({13} \) | \({14} \) | \({15} \) | \({16} \) | \({17} \) | \({18} \) | \({19} \) | \({20} \) | \({21} \) | \({22} \) | \({23} \) | \({24}\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(1\) | \(1 \) | \(2 \) | \(3 \) | \(4 \) | \(5 \) | \(6 \) | \(7 \) | \(8 \) | \(9 \) | \({10} \) | \({11} \) | \({12} \) | \({13} \) | \({14} \) | \({15} \) | \({16} \) | \({17} \) | \({18} \) | \({19} \) | \({20} \) | \({21} \) | \({22} \) | \({23} \) | \({24}\) |
\(2\) | \(2 \) | \(1 \) | \(5 \) | \(6 \) | \(3 \) | \(4 \) | \(8 \) | \(7 \) | \({11} \) | \({12} \) | \(9 \) | \({10} \) | \({19} \) | \({20} \) | \({21} \) | \({22} \) | \({23} \) | \({24}\) | \({13} \) | \({14} \) | \({15} \) | \({16} \) | \({17} \) | \({18}\) |
\(3 \) | \(3 \) | \(4 \) | \(1 \) | \(2 \) | \(6 \) | \(5 \) | \({13} \) | \({14} \) | \({15} \) | \({16} \) | \({17} \) | \({18} \) | \(7 \) | \(8 \) | \(9 \) | \({10} \) | \({11} \) | \({12} \) | \({20} \) | \({19} \) | \({23} \) | \({24}\) | \({21} \) | \({22} \) |
\(4\) | \(4 \) | \(3 \) | \(6 \) | \(5 \) | \(1 \) | \(2 \) | \({14} \) | \({13} \) | \({17} \) | \({18} \) | \({15} \) | \({16} \) | \({20} \) | \({19} \) | \({23} \) | \({24}\) | \({21} \) | \({22} \) | \(7 \) | \(8 \) | \(9 \) | \({10} \) | \({11} \) | \({12} \) |
\(5 \) | \(5 \) | \(6 \) | \(2 \) | \(1 \) | \(4 \) | \(3 \) | \({19} \) | \({20} \) | \({21} \) | \({22} \) | \({23} \) | \({24}\) | \(8 \) | \(7 \) | \({11} \) | \({12} \) | \(9 \) | \({10} \) | \({14} \) | \({13} \) | \({17} \) | \({18} \) | \({15} \) | \({16} \) |
\(6 \) | \(6 \) | \(5 \) | \(4 \) | \(3 \) | \(2 \) | \(1 \) | \({20} \) | \({19} \) | \({23} \) | \({24}\) | \({21} \) | \({22} \) | \({14} \) | \({13} \) | \({17} \) | \({18} \) | \({15} \) | \({16} \) | \(8 \) | \(7 \) | \({11} \) | \({12} \) | \(9 \) | \({10} \) |
\(7 \) | \(7 \) | \(8 \) | \(9 \) | \({10} \) | \({11} \) | \({12} \) | \(1 \) | \(2 \) | \(3 \) | \(4 \) | \(5 \) | \(6 \) | \({15} \) | \({16} \) | \({13} \) | \({14} \) | \({18} \) | \({17} \) | \({21} \) | \({22} \) | \({19} \) | \({20} \) | \({24}\) | \({23} \) |
\(8 \) | \(8 \) | \(7 \) | \({11} \) | \({12} \) | \(9 \) | \({10} \) | \(2 \) | \(1 \) | \(5 \) | \(6 \) | \(3 \) | \(4 \) | \({21} \) | \({22} \) | \({19} \) | \({20} \) | \({24}\) | \({23} \) | \({15} \) | \({16} \) | \({13} \) | \({14} \) | \({18} \) | \({17} \) |
\(9 \) | \(9 \) | \({10} \) | \(7 \) | \(8 \) | \({12} \) | \({11} \) | \({15} \) | \({16} \) | \({13} \) | \({14} \) | \({18} \) | \({17} \) | \(1 \) | \(2 \) | \(3 \) | \(4 \) | \(5 \) | \(6 \) | \({22} \) | \({21} \) | \({24}\) | \({23} \) | \({19} \) | \({20} \) |
\({10} \) | \({10} \) | \(9 \) | \({12} \) | \({11} \) | \(7 \) | \(8 \) | \({16} \) | \({15} \) | \({18} \) | \({17} \) | \({13} \) | \({14} \) | \({22} \) | \({21} \) | \({24}\) | \({23} \) | \({19} \) | \({20} \) | \(1 \) | \(2 \) | \(3 \) | \(4 \) | \(5 \) | \(6 \) |
\({11} \) | \({11} \) | \({12} \) | \(8 \) | \(7 \) | \({10} \) | \(9 \) | \({21} \) | \({22} \) | \({19} \) | \({20} \) | \({24}\) | \({23} \) | \(2 \) | \(1 \) | \(5 \) | \(6 \) | \(3 \) | \(4 \) | \({16} \) | \({15} \) | \({18} \) | \({17} \) | \({13} \) | \({14} \) |
\({12} \) | \({12} \) | \({11} \) | \({10} \) | \(9 \) | \(8 \) | \(7 \) | \({22} \) | \({21} \) | \({24}\) | \({23} \) | \({19} \) | \({20} \) | \({16} \) | \({15} \) | \({18} \) | \({17} \) | \({13} \) | \({14} \) | \(2 \) | \(1 \) | \(5 \) | \(6 \) | \(3 \) | \(4 \) |
\({13} \) | \({13} \) | \({14} \) | \({15} \) | \({16} \) | \({17} \) | \({18} \) | \(3 \) | \(4 \) | \(1 \) | \(2 \) | \(6 \) | \(5 \) | \(9 \) | \({10} \) | \(7 \) | \(8 \) | \({12} \) | \({11} \) | \({23} \) | \({24}\) | \({20} \) | \({19} \) | \({22} \) | \({21} \) |
\({14} \) | \({14} \) | \({13} \) | \({17} \) | \({18} \) | \({15} \) | \({16} \) | \(4 \) | \(3 \) | \(6 \) | \(5 \) | \(1 \) | \(2 \) | \({23} \) | \({24}\) | \({20} \) | \({19} \) | \({22} \) | \({21} \) | \(9 \) | \({10} \) | \(7 \) | \(8 \) | \({12} \) | \({11} \) |
\({15} \) | \({15} \) | \({16} \) | \({13} \) | \({14} \) | \({18} \) | \({17} \) | \(9 \) | \({10} \) | \(7 \) | \(8 \) | \({12} \) | \({11} \) | \(3 \) | \(4 \) | \(1 \) | \(2 \) | \(6 \) | \(5 \) | \({24}\) | \({23} \) | \({22} \) | \({21} \) | \({20} \) | \({19} \) |
\({16} \) | \({16} \) | \({15} \) | \({18} \) | \({17} \) | \({13} \) | \({14} \) | \({10} \) | \(9 \) | \({12} \) | \({11} \) | \(7 \) | \(8 \) | \({24}\) | \({23} \) | \({22} \) | \({21} \) | \({20} \) | \({19} \) | \(3 \) | \(4 \) | \(1 \) | \(2 \) | \(6 \) | \(5 \) |
\({17} \) | \({17} \) | \({18} \) | \({14} \) | \({13} \) | \({16} \) | \({15} \) | \({23} \) | \({24}\) | \({20} \) | \({19} \) | \({22} \) | \({21} \) | \(4 \) | \(3 \) | \(6 \) | \(5 \) | \(1 \) | \(2 \) | \({10} \) | \(9 \) | \({12} \) | \({11} \) | \(7 \) | \(8 \) |
\({18} \) | \({18} \) | \({17} \) | \({16} \) | \({15} \) | \({14} \) | \({13} \) | \({24}\) | \({23} \) | \({22} \) | \({21} \) | \({20} \) | \({19} \) | \({10} \) | \(9 \) | \({12} \) | \({11} \) | \(7 \) | \(8 \) | \(4 \) | \(3 \) | \(6 \) | \(5 \) | \(1 \) | \(2 \) |
\({19} \) | \({19} \) | \({20} \) | \({21} \) | \({22} \) | \({23} \) | \({24}\) | \(5 \) | \(6 \) | \(2 \) | \(1 \) | \(4 \) | \(3 \) | \({11} \) | \({12} \) | \(8 \) | \(7 \) | \({10} \) | \(9 \) | \({17} \) | \({18} \) | \({14} \) | \({13} \) | \({16} \) | \({15} \) |
\({20} \) | \({20} \) | \({19} \) | \({23} \) | \({24}\) | \({21} \) | \({22} \) | \(6 \) | \(5 \) | \(4 \) | \(3 \) | \(2 \) | \(1 \) | \({17} \) | \({18} \) | \({14} \) | \({13} \) | \({16} \) | \({15} \) | \({11} \) | \({12} \) | \(8 \) | \(7 \) | \({10} \) | \(9 \) |
\({21} \) | \({21} \) | \({22} \) | \({19} \) | \({20} \) | \({24}\) | \({23} \) | \({11} \) | \({12} \) | \(8 \) | \(7 \) | \({10} \) | \(9 \) | \(5 \) | \(6 \) | \(2 \) | \(1 \) | \(4 \) | \(3 \) | \({18} \) | \({17} \) | \({16} \) | \({15} \) | \({14} \) | \({13} \) |
\({22} \) | \({22} \) | \({21} \) | \({24}\) | \({23} \) | \({19} \) | \({20} \) | \({12} \) | \({11} \) | \({10} \) | \(9 \) | \(8 \) | \(7 \) | \({18} \) | \({17} \) | \({16} \) | \({15} \) | \({14} \) | \({13} \) | \(5 \) | \(6 \) | \(2 \) | \(1 \) | \(4 \) | \(3 \) |
\({23} \) | \({23} \) | \({24}\) | \({20} \) | \({19} \) | \({22} \) | \({21} \) | \({17} \) | \({18} \) | \({14} \) | \({13} \) | \({16} \) | \({15} \) | \(6 \) | \(5 \) | \(4 \) | \(3 \) | \(2 \) | \(1 \) | \({12} \) | \({11} \) | \({10} \) | \(9 \) | \(8 \) | \(7 \) |
\({24}\) | \({24}\) | \({23} \) | \({22} \) | \({21} \) | \({20} \) | \({19} \) | \({18} \) | \({17} \) | \({16} \) | \({15} \) | \({14} \) | \({13} \) | \({12} \) | \({11} \) | \({10} \) | \(9 \) | \(8 \) | \(7 \) | \(6 \) | \(5 \) | \(4 \) | \(3 \) | \(2 \) | \(1 \) |
\(\rho_i(\alpha)\) | \(\rho_i(\beta)\) | \(\rho_i(\gamma)\) | \(\rho_i(\delta)\) | |
---|---|---|---|---|
\(\rho_{1}\) | \(\alpha\) | \(\beta\) | \(\gamma\) | \(\delta\) |
\(\rho_{2}\) | \(\alpha\) | \(\beta\) | \(\delta\) | \(\gamma\) |
\(\rho_{3}\) | \(\alpha\) | \(\gamma\) | \(\beta\) | \(\delta\) |
\(\rho_{4}\) | \(\alpha\) | \(\gamma\) | \(\delta\) | \(\beta\) |
\(\rho_{5}\) | \(\alpha\) | \(\delta\) | \(\beta\) | \(\gamma\) |
\(\rho_{6}\) | \(\alpha\) | \(\delta\) | \(\gamma\) | \(\beta\) |
\(\rho_{7}\) | \(\beta\) | \(\alpha\) | \(\gamma\) | \(\delta\) |
\(\rho_{8}\) | \(\beta\) | \(\alpha\) | \(\delta\) | \(\gamma\) |
\(\rho_i(\alpha)\) | \(\rho_i(\beta)\) | \(\rho_i(\gamma)\) | \(\rho_i(\delta)\) | |
---|---|---|---|---|
\(\rho_{9}\) | \(\beta\) | \(\gamma\) | \(\alpha\) | \(\delta\) |
\(\rho_{10}\) | \(\beta\) | \(\gamma\) | \(\delta\) | \(\alpha\) |
\(\rho_{11}\) | \(\beta\) | \(\delta\) | \(\alpha\) | \(\gamma\) |
\(\rho_{12}\) | \(\beta\) | \(\delta\) | \(\gamma\) | \(\alpha\) |
\(\rho_{13}\) | \(\gamma\) | \(\alpha\) | \(\beta\) | \(\delta\) |
\(\rho_{14}\) | \(\gamma\) | \(\alpha\) | \(\delta\) | \(\beta\) |
\(\rho_{15}\) | \(\gamma\) | \(\beta\) | \(\alpha\) | \(\delta\) |
\(\rho_{16}\) | \(\gamma\) | \(\beta\) | \(\delta\) | \(\alpha\) |
\(\rho_i(\alpha)\) | \(\rho_i(\beta)\) | \(\rho_i(\gamma)\) | \(\rho_i(\delta)\) | \(\rho_{17}\) | \(\gamma\) | \(\delta\) | \(\alpha\) | \(\beta\) |
---|---|---|---|---|
\(\rho_{18}\) | \(\gamma\) | \(\delta\) | \(\beta\) | \(\alpha\) | \(\rho_{19}\) | \(\delta\) | \(\alpha\) | \(\beta\) | \(\gamma\) |
\(\rho_{20}\) | \(\delta\) | \(\alpha\) | \(\gamma\) | \(\beta\) |
\(\rho_{21}\) | \(\delta\) | \(\beta\) | \(\alpha\) | \(\gamma\) |
\(\rho_{22}\) | \(\delta\) | \(\beta\) | \(\gamma\) | \(\alpha\) |
\(\rho_{23}\) | \(\delta\) | \(\gamma\) | \(\alpha\) | \(\beta\) |
\(\rho_{24}\) | \(\delta\) | \(\gamma\) | \(\beta\) | \(\alpha\) |
\( \quad\{\rho_1,\rho_2,\ldots,\rho_{24}\} = Gal(F_0(v)/F_0) \cong S_4\)