Techniques of Solving Equations à la Galois
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
[Step 1] LRT (Lagrange Resolvent Transformation)
\begin{align}
& h_0=\prod_{\rho_i \in \ \kappa_1}\rho_i(x-v)=(x-v_1)(x-v_4)...(x-v_{21})(x-v_{24}) \\
& h_1=\prod_{\rho_i \in \ \kappa_2}\rho_i(x-v)=(x-v_2)(x-v_3)...(x-v_{22})(x-v_{23}) \notag \\
\notag \\
& \begin{bmatrix}
t_0 \\
t_1
\end{bmatrix}
=\frac{1}{2}
\begin{bmatrix}
1&1 \\
1&-1
\end{bmatrix}
\cdot
\begin{bmatrix}
h_0 \\
h_1
\end{bmatrix} \\
\end{align}
\begin{align} &S_4/A_4 \cong C_2 \equiv \{\kappa_1,\kappa_2\} \quad \kappa_2^2=\kappa_1 \\ \notag \\ &\left\{ \begin{array}{l} \kappa_1\equiv \{\rho_{1},\rho_{4},\rho_{5},\rho_{8},\rho_{9},\rho_{12},\rho_{13},\rho_{16},\rho_{17},\rho_{20},\rho_{21},\rho_{24}\} \\ \kappa_2\equiv \{\rho_{2},\rho_{3},\rho_{6},\rho_{7},\rho_{10},\rho_{11},\rho_{14},\rho_{15},\rho_{18},\rho_{19},\rho_{22},\rho_{23}\} \\ \end{array} \right.\\ \notag \\ &\left\{ \begin{array}{l} v \kappa_1\equiv \{v_{1},v_{4},v_{5},v_{8},v_{9},v_{12},v_{13},v_{16},v_{17},v_{20},v_{21},v_{24}\} \\ v \kappa_2\equiv \{v_{2},v_{3},v_{6},v_{7},v_{10},v_{11},v_{14},v_{15},v_{18},v_{19},v_{22},v_{23}\} \\ \end{array} \right.\\ \end{align}
\begin{align} &\left\{ \begin{array}{l} h_0=x^{12}+ca_{11}x^{11}+...+ca_1x+ca_0 \\ \\ h_1=x^{12}+cb_{11}x^{11}+...+cb_1x+cb_0 \\ \end{array} \right.\\ \notag \\ &\quad ca_{11}=-(v_1+v_4+...+v_{24}), \quad cb_{11}=-(v_2+v_3+....+v_{23}), \quad \text{etc.} \\ \end{align}
\( \ \) | \(\kappa_j(v \kappa_1)\) | \(\kappa_j(v \kappa_2)\) |
---|---|---|
\(\kappa_1\) | \(v_{1},v_{4},v_{5},v_{8},v_{9},v_{12}\) \(v_{13},v_{16},v_{17},v_{20},v_{21},v_{24}\) | \(v_{2},v_{3},v_{6},v_{7},v_{10},v_{11}\) \(v_{14},v_{15},v_{18},v_{19},v_{22},v_{23}\) |
\(\kappa_2\) | \(v_{2},v_{3},v_{6},v_{7},v_{10},v_{11}\) \(v_{14},v_{15},v_{18},v_{19},v_{22},v_{23}\) | \(v_{1},v_{4},v_{5},v_{8},v_{9},v_{12}\) \(v_{13},v_{16},v_{17},v_{20},v_{21},v_{24}\) |
\( \ \) | \(\kappa_j(ca_i)\) | \(\kappa_j(cb_i)\) |
---|---|---|
\(\kappa_1\) | \(ca_i\) | \(cb_i\) |
\(\kappa_2\) | \(cb_i\) | \(ca_i\) |
\( \ \) | \(\kappa_j(h_0)\) | \(\kappa_j(h_1)\) |
---|---|---|
\(\kappa_1\) | \(h_0\) | \(h_1\) |
\(\kappa_2\) | \(h_1\) | \(h_0\) |
\begin{align} &\left\{ \begin{array}{l} t_0=\frac{1}{2}(h_0+h_1)=x^{12}+\displaystyle\sum_{i=0}^{11} \frac{1}{2}(ca_i+cb_i)x^i=x^{12}+\displaystyle\sum_{i=0}^{11} cc_i x^i\\ t_1=\frac{1}{2}(h_0-h_1)=\displaystyle \sum_{i=0}^{11}\frac{1}{2} (ca_i-cb_i)x^i= \displaystyle \sum_{i=0}^{11} cd_i x^i\\ \end{array} \right.\\ \end{align}
\( \ \) | \(\kappa_j(cc_i=\frac{1}{2}(ca_i+cb_i))\) | \(\kappa_j(cd_i=\frac{1}{2}(ca_i-cb_i))\) |
---|---|---|
\(\kappa_1\) | \(cc_i=\frac{1}{2}(ca_i+cb_i)\) | \(cd_i=\frac{1}{2}(ca_i-cb_i)\) |
\(\kappa_2\) | \(cc_i=\frac{1}{2}(cb_i+ca_i)\) | \(-cd_i=\frac{1}{2}(cb_i-ca_i)\) |
\( \ \) | \(\kappa_j(t_0)\) | \(\kappa_j(t_1)\) | \(\kappa_j(cd_i ^2)\) |
---|---|---|---|
\(\kappa_1\) | \(t_0\) | \(t_1\) | \(cd_i^2\) |
\(\kappa_2\) | \(t_0\) | \(-t_1\) | \(cd_i^2\) |
\begin{align} t_0 \ \in F_0[x], \quad t_1 \ \in F_0(v)[x], \quad cd_i^2 \ \in F_0 \\ \end{align}
\begin{align} &t_1=cd_m \times \bbox[#FFFF00]{ \biggl( x^m+\displaystyle \sum_{i=0}^{m-1} \frac{cd_i}{cd_m}x^i\biggr) }=cd_m \times \bbox[#FFFF00]{ q_1(x) }\\ \notag \\ &\kappa_1 \biggl( \frac{cd_i}{cd_m}\biggr)= \frac{cd_i}{cd_m} \quad [i=0,1,...,m-1] \notag \\ &\kappa_2 \biggl( \frac{cd_i}{cd_m}\biggr)= \frac{-cd_i}{-cd_m}=\frac{cd_i}{cd_m} \quad [i=0,1,...,m-1] \notag \\ \notag \\ &\therefore \ \biggl( \frac{cd_i}{cd_m}\biggr) \ \in F_0 \quad \Rightarrow \quad \bbox[#FFFF00]{ q_1(x) \in F_0[x] } \\ \end{align}