Techniques of Solving Equations à la Galois


Profile
Name: scruta \(\quad\) Daily life: mowing

Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14

\(\qquad\)


Contact

mailaddress



Copyright © 2023 scruta

Chapter3

    Exhausting! Packed with Cyclic Extensions!

\(\qquad \qquad \qquad f(x)=x^4+4x+2 \qquad Galois \ Group:S_4\)

\( \quad \)

▶ Page    1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12           ▶ Sample Program

\(\quad \)
home \(\quad \)

\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)
\(\nextSection\)

[3-12] Computation for \(F_2/F_1\): finding the minimal polynomial \(g_2(x)\) (3)

\(\nextSection\)
In the previous section, we adjoined \(a_2\) to \(F_1\) to form the extension field \(F_2\). In fact, we also need to express \(ck_m\) in terms of \(a_2\). To that end, focus on the rightmost column \(ce_i \cdot ck_l\) in [Table 3-12], where \(ce_m\) and \(ck_m\) are related.
As is immediate from [Table 3-12], each product \( (ce_i \cdot ck_l )\) is invariant under the automorphisms \(\kappa_j\).
A direct computation shows that \(ce_m \cdot ck_m\) is an element of \(F_0\), as in (12.2).

\begin{align} &\quad \left\{ \begin{array}{l} \kappa_1(ce_i \cdot ck_l)=\kappa_1(ce_i) \cdot \kappa_1(ck_l)=ce_i \cdot ck_l \qquad [i,j]=[0,1,2,3]\\ \kappa_2(ce_i \cdot ck_l)=\kappa_2(ce_i) \cdot \kappa_2(ck_l)=(\omega^2 ce_i) \cdot (\omega ck_l)= \omega^3 ce_i \cdot ck_l= ce_i \cdot ck_l \\ \kappa_3(ce_i \cdot ck_l)=\kappa_3(ce_i) \cdot \kappa_3(ck_l)=(\omega ce_i) \cdot (\omega^2 ck_l)= \omega^3 ce_i \cdot ck_l= ce_i \cdot ck_l \\ \end{array} \right. \\ \notag \\ \end{align}

\begin{align} &\therefore \ ce_i \cdot ck_l \ \in F_1 \quad \Rightarrow \quad ce_m \cdot ck_m=\frac{416}{3} \ \in \ F_0 \\ \end{align}

Using this value \(ce_m \cdot ck_m\), we can represent \(ck_m\) as an element of \(F_2\), as in (12.3). Replacing \(ce_m\) by \(a_2\) then defines \(ck_m\) as the element \(b_2 \in F_2\) in (12.5).

\begin{align} ck_m&=\frac{ce_m \cdot ck_m}{ce_m} =\frac{ce_m^2 \cdot (ce_m \cdot ck_m)}{ce_m^3}=\frac{ce_m^2 \cdot (ce_m \cdot ck_m)}{A_2} \\ &=ce_m^2 \cdot (ce_m \cdot ck_m) \cdot A_2^{-1}=\frac{416}{3} \cdot ce_m^2 \cdot A_2^{-1} \\ \notag \\ \therefore \ ck_m&=\frac{416}{3} \cdot ce_m^2 \cdot A_2^{-1} \quad \Rightarrow \quad b_2 \equiv \frac{416}{3} \cdot a_2^2 \cdot A_2^{-1} \ \in F_2 \end{align}

Computing \(A_2^{-1}\) gives (12.6). Substituting this into the expression for \(b_2\) yields (12.7). Using the \(F_2\)-elements \(\{a_2,b_2\}\) thus obtained, we evaluate \(\{\tilde{t_1},\tilde{t_2}\}\) as in (11.8–9).
Since \(\{t_1,t_2\}\) are now polynomials over \(F_2\), we attach tildes and write them as \(\{\tilde{t_1},\tilde{t_2}\}\) to distinguish from the previous ones.

\begin{align} & A_2^{-1}=-\frac{7 {a_1} \omega }{35995648}-\frac{243 \omega }{281216}+\frac{19 {a_1}}{359956480}-\frac{1431}{1124864}  \in F_1 \\ \notag \\ &\quad \therefore \ b_2=a_2^2\biggl(-\frac{7 {a_1} \omega }{259584}-\frac{81 \omega }{676}+\frac{19 {a_1}}{2595840}-\frac{477}{2704}\biggr) \\ \notag \\ &\tilde{t_1}=a_2 \cdot q_1=a_2\biggl( x^2-\frac{5 {a_1} \omega }{2496}+\frac{18 \omega }{13}-\frac{31 {a_1}}{24960}-\frac{207}{26} \biggr) \ \in \ F_2[x]\\ &\tilde{t_2}=b_2 \cdot q_2=b_2\biggl( x^2+\frac{5 {a_1} \omega }{2496}-\frac{18 \omega }{13}+\frac{19 {a_1}}{24960}-\frac{243}{26} \biggr) \ \in \ F_2[x]\\ \end{align}

Finally, substituting \(t_0\) from (11.6) and \(\{ \tilde{t_1},\tilde{t_2} \}\) from (12.8–9) into the Inverse Lagrange Resolvent Transformation in (12.1) yields \(\{\tilde{h_0},\tilde{h_1},\tilde{h_2}\}\).

[Step 3] ILRT (Inverse Lagrange Resolvent Transformation)
\begin{align} &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1} \\ \tilde{h_2} \end{bmatrix} = \begin{bmatrix} 1&1&1 \\ 1&\omega^2&(\omega^2)^2\\ 1&\omega&(\omega^2)\\ \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \\ \tilde{t_2} \end{bmatrix} \quad \Longrightarrow \quad \left\{ \begin{array}{l} g_1(x)=\tilde{h_0}\cdot \tilde{h_1} \cdot \tilde{h_2} \\ g_2(x) \equiv \tilde{h_0} \ \in \ F_2[x] \end{array} \right. \\ \end{align}


In particular, since \(\tilde{h_0}\) contains the factor \((x-v)\), we may take \(\tilde{h_0} \equiv g_2(x)\) as the minimal polynomial of \(v\) over \(F_2\).

We summarize the results from the previous page.

\begin{align} &\tilde{h_0}=t_0+\tilde{t_1}+\tilde{t_2} \equiv g_2(x) \\ &\qquad \Downarrow \notag \\ &\ g_2(x)= x^4+112+a_2\biggl( x^2-\frac{5 {a_1} \omega }{2496}+\frac{18 \omega }{13}-\frac{31 {a_1}}{24960}-\frac{207}{26} \biggr) \notag \\ & \qquad \qquad +a_2^2\biggl(-\frac{7 {a_1} \omega }{259584}-\frac{81 \omega }{676}+\frac{19 {a_1}}{2595840}-\frac{477}{2704}\biggr) \notag \\ & \qquad \qquad \qquad \times \biggl( x^2+\frac{5 {a_1} \omega }{2496}-\frac{18 \omega }{13}+\frac{19 {a_1}}{24960}-\frac{243}{26} \biggr)\\ \notag \\ & B_2(x)= x^3-A_2=0 \quad A_2= \frac{14 {a_1} \omega }{27}+2304 \omega +\frac{89 {a_1}}{135}-1088 \\ &\ a_2=\sqrt[3]{A_2} \qquad F_2 \equiv F_1(a_2) \end{align}



[Supplement] Notes on computing \(A_2^{-1}\)

Since \(A_2 \in F_1\), the field \(F_1\) is determined by the relations \([\ \Omega=0,\ B_1(a_1)=0\ ]\).
With these two relations, expand \(A_2^{-1}\) in a basis of \(F_1\) as in (12.13). Solving the linear system for the coefficients \(c_{i,j}\) under the constraint \([\ A_2^{-1} \cdot A_2=1\ ]\) gives \(A_2^{-1}\). As usual, reductions \(\{ \mod(\Omega),\ \mod(B_1(a_1)) \}\) are required.

\begin{align} &\left\{ \begin{array}{l} \Omega=\omega^2+\omega+1=0 \\ B_1(a_1)=a_1^2+17510400=0 \\ \end{array} \right.\\ \end{align}

\begin{align} &\left\{ \begin{array}{l} A_2^{-1}=\displaystyle \sum_{i=0}^{1}\displaystyle \sum_{j=0}^1 c_{i,j} \cdot \omega^i \cdot a_1^j \\ A_2^{-1} \cdot A_2=1 \\ \end{array} \right.\\ \end{align}


\(\quad \)
home \(\quad \)