\begin{align*} &f(x)=3x^3-3x+1 \quad \{\alpha,\beta,\gamma\}: \ roots \ of \ f(x)\\ &Primitive \ element \quad v=1\cdot\alpha+2\cdot \beta+3\cdot\gamma \end{align*}
\[\qquad The \ system \ of \ equations\]
\[ \qquad \left\{ \begin{array}{l} \alpha^3-3\alpha+1=0\\ \beta^2+\alpha\beta+\alpha^2-3=0\\ \alpha+\beta+\gamma=0\\ v-(\alpha+2\beta+3\gamma)=0 \end{array} \right.\\ \qquad \qquad \qquad \Downarrow \]
\[\qquad Elimination \ Theory\]
\[ \qquad V(v)= v^6-18v^4+81v^2-81 \\ \qquad \qquad =\left( {{v}^{3}}-9 v-9\right) \, \left( {{v}^{3}}-9 v+9\right) \]
\[g_{0}(x)=x^3-9x-9 \]
\[ g_0(x):minimal \ polynomial \ of \ v \ on \ F_0=Q(\omega) \]
\[Factorization \ of \ f(x) \ on \ F_0(v)\] \[\quad "maxima's \ function \ "\] \[\qquad factor(f(x),g_0(v))\]
\begin{align*} \alpha&=-\frac{{{v}^{2}}}{3}+2 & \beta&=\frac{2 {{v}^{2}}}{3}-v-4\\ \gamma&=-\frac{{{v}^{2}}}{3}+v+2 & & \end{align*}
\begin{align*} v_{1}&=v & v_{2}&={{v}^{2}}-v-6\\ v_{3}&=-{{v}^{2}}+2 v+6 & v_{4}&=-{{v}^{2}}+v+6\\ v_{5}&={{v}^{2}}-2 v-6 & v_{6}&=-v \end{align*}
\begin{align*} &g_0(v_i)=0 \quad for \ (i=1,4,5) \\ &\qquad \qquad \Downarrow\ \\ &A_3: Galois \ group \ of \ F(x) \\ &\qquad composition \ series \quad A_3 \rhd \{e\} \end{align*}
\begin{align*} &g_1(x) : \ minimal \ polynomial \ of \ v\\ &g_{1}(x)=x-\frac{{{a}_{1}^{2}} \omega }{3}-\frac{2 {{a}_{1}^{2}}}{3}+{a_1} \in F_{1}[x] \\ \end{align*}
\begin{align*} \\ F_1=F_0(a_1) \quad Here \ B_1&={{a}_{1}^{3}}-3\omega +3 =0, \\ \Omega&=\omega^2+\omega+1=0 \end{align*}
\begin{align*} v=&\frac{{{a}_{1}^{2}} \omega }{3}+\frac{2 {{a}_{1}^{2}}}{3}-{a_1} \\ \\ \alpha=&\frac{{a_1} \omega }{3}-\frac{{{a}_{1}^{2}}}{3}+\frac{2 {a_1}}{3}\\ \beta=&-\frac{{{a}_{1}^{2}} \omega }{3}-\frac{2 {a_1} \omega }{3}-\frac{{a_1}}{3}\\ \gamma=&\frac{{{a}_{1}^{2}} \omega }{3}+\frac{{a_1} \omega }{3}+\frac{{{a}_{1}^{2}}}{3}-\frac{{a_1}}{3}\\ \\ Here &\quad B_1={{a}_{1}^{3}}-3\omega +3 =0,\\ &\quad \Omega=\omega^2+\omega+1=0 \end{align*}
前節で \(f(x)\) の根 \(\{x_1,x_2,x_3\}\) を代数体 \(F_0(v)\) の中で求める事が出来ましたが、
\(\{\ \alpha,\beta,\gamma \ \}\) との対応が未だ取れておりません。対応仕方は \(3!=6\) 通りあります。
対応関係を求める準備として、対称群 \(S_3\) の記号を導入します。
\begin{align} \setCounter{17} &\left\{ \begin{array}{l} \sigma_{1}=\begin{pmatrix} 1&2&3 \\ 1&2&3 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \alpha&\beta&\gamma \end{pmatrix} \quad \sigma_{2}=\begin{pmatrix} 1&2&3 \\ 1&3&2 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \alpha&\gamma&\beta \end{pmatrix} \\ \sigma_{3}=\begin{pmatrix} 1&2&3 \\ 2&1&3 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \beta&\alpha&\gamma \end{pmatrix} \quad \sigma_{4}=\begin{pmatrix} 1&2&3 \\ 2&3&1 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \beta&\gamma&\alpha \end{pmatrix} \\ \sigma_{5}=\begin{pmatrix} 1&2&3 \\ 3&1&2 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \gamma&\alpha&\beta \end{pmatrix} \quad \sigma_{6}=\begin{pmatrix} 1&2&3 \\ 3&2&1 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \gamma&\beta&\alpha \end{pmatrix} \end{array} \right. \\ \end{align}
\begin{align} &\qquad \qquad w \equiv x_{1}+2 x_{2}+3 x_{3} \\ \notag \\ &\left\{ \begin{array}{l} \sigma_1 (w)=w_1=x_1+2x_2+3x_3 &\sigma_2 (w)=w_2=x_1+2x_3+3x_2 \\ \sigma_3 (w)=w_3=x_2+2x_1+3x_3 &\sigma_4 (w)=w_4=x_2+2x_3+3x_1 \\ \sigma_5 (w)=w_5=x_3+2x_1+3x_2 &\sigma_6 (w)=w_6=x_3+2x_2+3x_1 \end{array} \right. \end{align}
\begin{align} \left\{ \begin{array}{l} w_1= {{v}^{2}}-2 v-6 &w_2= -v \\ w_3= {{v}^{2}}-v-6 &\bbox[#FFFF00]{w_4= v } \\ w_5=-{{v}^{2}}+v+6 &w_6= -{{v}^{2}}+2 v+6 \end{array} \right. \end{align}
\begin{align} &\left\{ \begin{array}{l} &\alpha=-\frac{{{v}^{2}}}{3}+2 \\ &\beta= \frac{2 {{v}^{2}}}{3}-v-4\\ &\gamma= -\frac{{{v}^{2}}}{3}+v+2 \end{array} \right. \\ \end{align}
\begin{align} &\qquad \qquad v \equiv \alpha+2 \beta+3 \gamma \\ \notag \\ &\left\{ \begin{array}{l} \sigma_1 (v)=v_1=\alpha+2\beta+3\gamma &\sigma_2 (v)=v_2=\alpha+2\gamma+3\beta \\ \sigma_3 (v)=v_3=\beta+2\alpha+3\gamma &\sigma_4 (v)=v_4=\beta+2\gamma+3\alpha \\ \sigma_5 (v)=v_5=\gamma+2\alpha+3\beta &\sigma_6 (v)=v_6=\gamma+2\beta+3\alpha \end{array} \right. \\ \notag \\ &V(x) =(x-v_1)(x-v_2)(x-v_3)(x-v_4)(x-v_5)(x-v_6) \\ \notag \\ &\sigma_i(V(x))=V(x) \quad [i=1,2,..6] \quad ( \ S_3で不変 \ )\\ \end{align}
\begin{align} &\left\{ \begin{array}{l} \sigma_1 (v)={v_1}=v &\sigma_2 (v)={v_2}={{v}^{2}}-v-6 \\ \sigma_3 (v)={v_3}= -{{v}^{2}}+2 v+6 &\sigma_4 (v)={v_4}= -{{v}^{2}}+v+6 \\ \sigma_5 (v)={v_5}= {{v}^{2}}-2 v-6 &\sigma_6 (v)={v_6}=-v \\ \end{array} \right. \end{align}
\begin{align} V(x)&={{x}^{6}}-2 {{v}^{4}} {{x}^{4}}+6 {{v}^{3}} {{x}^{4}}+18 {{v}^{2}} {{x}^{4}}-36 v {{x}^{4}} -72 {{x}^{4}}+{{v}^{8}} {{x}^{2}} \notag \\ &-6 {{v}^{7}} {{x}^{2}} -9 {{v}^{6}} {{x}^{2}}+90 {{v}^{5}} {{x}^{2}}+45 {{v}^{4}} {{x}^{2}} -540 {{v}^{3}} {{x}^{2}}-324 {{v}^{2}} {{x}^{2}} \notag \\ &+1296 v {{x}^{2}} +1296 {{x}^{2}}-{{v}^{10}}+6 {{v}^{9}}+11 {{v}^{8}} -96 {{v}^{7}}-64 {{v}^{6}} \notag \\ &+576 {{v}^{5}}+396 {{v}^{4}} -1296 {{v}^{3}}-1296 {{v}^{2}} \quad ( \ mod \ g_0(v) \ )\notag \\ \notag \\ &= \ {{x}^{6}}-18 {{x}^{4}}+81 {{x}^{2}}-81 \in \ F_0[x] \\ \end{align}
\begin{align} V(v_2)&=v_2^6-18v_2^4+81v_2^2-81 \notag \\ \notag \\ &={{v}^{12}}-6 {{v}^{11}}-21 {{v}^{10}}+160 {{v}^{9}}+177 {{v}^{8}}-1734 {{v}^{7}}-935 {{v}^{6}}+9612 {{v}^{5}} \notag \\ &\quad +4491 {{v}^{4}}-27378 {{v}^{3}}-16443 {{v}^{2}}+32076 v+26163 \notag \\ &=0 \qquad ( \ mod \ g_0(v) \ )\\ \notag \\ V(v_1)&=V(v_2)=V(v_3)=V(v_4)=V(v_5)=V(v_6)=0 \quad ( \ mod \ g_0(v) \ )\\ \end{align}
Profile
Name:scruta Daily life:mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
maxima programs
もしご興味があれば、下記のページよりダウンロード出来ます。
但し、何の工夫もないプログラムです。
download pageへ
Mail
もしご意見があれば下記のメールアドレスにe-mailでお送り下さい
(なおスパムメール対策のために、メールアドレスを画像表示しています)