数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
\begin{align} f(x)&=(x-\alpha)(x-\beta)(x-\gamma)= x^3+3x+1=0 \qquad \in F_0[x] \\ \end{align}
\begin{align} v &\equiv 1 \cdot \alpha +2 \cdot \beta +3 \cdot \gamma \quad: \ primitive \ element \\ \end{align}
\begin{align} f(x)&=x^3+3x+1 \notag \\ \notag \\ f(x)&=(x-\alpha)(x^2+\alpha x+\alpha^2+3)+(\alpha^3+3 \alpha +1) \notag \\ &=(x-\alpha)q_1(x)+r_1\\ \notag \\ q_1(x)&=(x-\beta)( x+\alpha+\beta )+(\beta^2+\alpha \beta +\alpha^2+3) \notag \\ &=(x-\beta)q_2(x)+r_2\\ \notag \\ q_2(x)&=(x-\gamma) \cdot 1+(\alpha+\beta+\gamma) \notag \\ &=(x-\gamma)q_3(x)+r_3\\ \end{align}
\begin{align} f(\alpha)&=0 & &\rightarrow & r_1&=\alpha^3+3 \alpha +1=0\\ &\Downarrow & & & & \notag \\ \therefore \ q_1(\beta)&=0 & &\rightarrow & r_2&=\beta^2+\alpha \beta +\alpha^2+3=0\\ &\Downarrow & & & & \notag \\ \therefore \ q_2(\gamma)&=0 & &\rightarrow & r_3&=\alpha+\beta+\gamma=0\\ \end{align}
[1] \(F_0(v)\) は分離拡大である。すなわち \(v\) の最小多項式が重根を持たない事。
[2] \(F_0(v)\) は正規拡大である。すなわち \(F_0(v)\) が \(v\) の最小多項式の全ての根を含む事。
\begin{align} V(x)&\equiv \displaystyle \prod_{i=1}^6\sigma_i(x-v)=(x-v_{1})(x-v_{2})(x-v_{3})(x-v_{4})(x-v_{5})(x-v_{6}) \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} &\sigma_{1}=\begin{pmatrix} 1&2&3 \\ 1&2&3 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \alpha&\beta&\gamma \end{pmatrix} & &\sigma_{2}=\begin{pmatrix} 1&2&3 \\ 1&3&2 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \alpha&\gamma&\beta \end{pmatrix} \\ &\sigma_{3}=\begin{pmatrix} 1&2&3 \\ 2&1&3 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \beta&\alpha&\gamma \end{pmatrix} & &\sigma_{4}=\begin{pmatrix} 1&2&3 \\ 2&3&1 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \beta&\gamma&\alpha \end{pmatrix} \\ &\sigma_{5}=\begin{pmatrix} 1&2&3 \\ 3&1&2 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \gamma&\alpha&\beta \end{pmatrix} & &\sigma_{6}=\begin{pmatrix} 1&2&3 \\ 3&2&1 \end{pmatrix}=\begin{pmatrix} \alpha&\beta&\gamma \\ \gamma&\beta&\alpha \end{pmatrix} \\ \end{array} \right.\\ \end{align}
\begin{align} \sigma_4(v)&=\sigma_4(\alpha+2\beta+3\gamma) =\sigma_4(\alpha)+2\sigma_4(\beta)+3\sigma_4(\gamma) =\beta+2\gamma+3\alpha \notag \\ \end{align}
\begin{align} \sigma_{1}(v)=\alpha+2\beta+3\gamma &\equiv v_1 & \sigma_{2}(v)=\alpha+2\gamma+3\beta &\equiv v_2 \notag \\ \sigma_{3}(v)=\beta+2\alpha+3\gamma &\equiv v_3 & \sigma_{4}(v)=\beta+2\gamma+3\alpha &\equiv v_4 \\ \sigma_{5}(v)=\gamma+2\alpha+3\beta &\equiv v_5 & \sigma_{6}(v)=\gamma+2\beta+3\alpha &\equiv v_6 \notag \\ \end{align}