数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
Step1 LRT(Lagrahge Resolvent Transformation)
\begin{align}
&Gal(F_2/F_1)=A_3/e \equiv C_2=\{\rho_1,\rho_4,\rho_5\} \\
\notag \\
&\left\{
\begin{array}{l}
h_0=\rho_1(x-v)=(x-v_1)=x-v \\
h_1=\rho_4(x-v)=(x-v_4)=x-{{v}^{2}}+\frac{{a_1} v}{6}+\frac{v}{2}-6 \\
h_2=\rho_5(x-v)=(x-v_5)=x+{{v}^{2}}-\frac{{a_1} v}{6}+\frac{v}{2}+6 \\
\end{array}
\right. \\
\end{align}
\begin{align} \notag \\ &\begin{bmatrix} t_0 \\ t_1 \\ t_2 \end{bmatrix} =\frac{1}{3} \begin{bmatrix} 1&1&1 \\ 1&\omega&\omega^2\\ 1&(\omega^2)&(\omega^2)^2\\ \end{bmatrix} \cdot \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} x \\ -\omega(\frac{2 {{v}^{2}}}{3}-\frac{{a_1} v}{9}+4)-\frac{{{v}^{2}}}{3}+\frac{{a_1} v}{18}-\frac{v}{2}-2\\ \omega(\frac{2 {{v}^{2}}}{3}-\frac{{a_1} v }{9}+4 ) +\frac{{{v}^{2}}}{3}-\frac{{a_1} v}{18}-\frac{v}{2}+2 \end{bmatrix}\\ \notag \\ \varOmega&=\omega^2+\omega+1=0 \notag \\ \end{align}
\begin{align} \bbox[#FFFF00]{ t_1^3}&=\left(-\omega(\frac{2 {{v}^{2}}}{3}-\frac{{a_1} v}{9}+4) -\frac{{{v}^{2}}}{3}+\frac{{a_1} v}{18}-\frac{v}{2}-2 \right)^3 \notag \\ & \bbox[#FFFF00]{=3\omega +\frac{{a_1+3}}{2} } \quad \in \ F_1 \qquad (mod \ g_1(v)),(mod \ B_1), (mod \ \varOmega) \\ \notag \\ t_2^3&=\left( \omega(\frac{2 {{v}^{2}}}{3}-\frac{{a_1} v }{9}+4 ) +\frac{{{v}^{2}}}{3}-\frac{{a_1} v}{18}-\frac{v}{2}+2 \right)^3 \notag \\ &=-3\omega +\frac{{a_1-3}}{2} \quad \in \ F_1 \qquad (mod \ g_1(v)),(mod \ B_1) ,(mod \ \varOmega) \\ \notag \\ t_1 \cdot t_2&=\left(-\omega(\frac{2 {{v}^{2}}}{3}-\frac{{a_1} v}{9}+4) -\frac{{{v}^{2}}}{3}+\frac{{a_1} v}{18}-\frac{v}{2}-2 \right) \notag \\ &\qquad \times \left( \omega(\frac{2 {{v}^{2}}}{3}-\frac{{a_1} v }{9}+4 ) +\frac{{{v}^{2}}}{3}-\frac{{a_1} v}{18}-\frac{v}{2}+2 \right) \notag \\ &=\frac{\left( {{v}^{2}}+12\right)(\omega^2+ \omega) +{{v}^{2}}+3}{3} \qquad (mod \ g_1(v)), (mod \ B_1) \notag \\ &=-3 \ \in F_0 \qquad \qquad (mod \ \varOmega) \\ \end{align}
Step2 二項方程式 \(B_2(x)\) と新たな添加数 \(a_2\) の生成
\begin{align} t_1^3&=3\omega +\frac{1}{2}(a_1+3)=A_2 \ \in \ F_1 \\ \notag \\ \therefore \ B_2(x)&=x^3-A_2=0 \qquad t_1 \equiv a_2=\sqrt[3]{A_2} \ \in \ F_2 \\ \end{align}
\begin{align} t_2=\frac{t_1 \cdot t_2}{t_1}=\frac{t_1^2\cdot (t_1t_2)}{t_1^2\cdot t_1} =\frac{t_1^2\cdot (t_1t_2)}{t_1^3}=\frac{a_1^2 \cdot (-3)}{A_2} =-\frac{3a_2^2}{A_2} \end{align}
\begin{align} A_2^{-1}&=\frac{1}{18}+\frac{\omega}{9}-\frac{a_1}{54} \\ \end{align}
\begin{align} t_0=x ,\quad \tilde{t_1}=a_2, \quad \tilde{t_2}=-( \ 3 \ a_2^2 \ )\cdot A_2^{-1}=a_2^2\left(-\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) \\ \end{align}
\begin{align} A_2^{-1}&=d_0+d_1\omega+d_2 a_1+d_3 \omega \cdot a_1\\ \notag \\ A_2 \cdot A_2^{-1}&=\left(3\omega +\frac{{a_1+3}}{2} \right) \cdot \left(d_0+d_1\omega+d_2 a_1+d_3 \omega a_1\right) \notag \\ &=D_0+\omega D_1+ a_1 D_2+ \omega a_1 D_3=1 \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} D_0=\left( -\frac{135 {d_2}}{2}-3 {d_1}+\frac{3 {d_0}}{2} \right)=1 \qquad D_1=\left(-\frac{135 {d_3}}{2}-\frac{3 {d_1}}{2}+3 {d_0} \right)=0 \\ D_2=\left(-3 {d_3}+\frac{3 {d_2}}{2}+\frac{{d_0}}{2}\right) =0 \qquad D_3=\left(-\frac{3 {d_3}}{2}+3 {d_2}+\frac{{d_1}}{2} \right)=0 \end{array} \right. \\ \notag \\ &\therefore \quad \left[ \ d_0=\frac{1}{18}, \ d_1=\frac{1}{9}, \ d_2=-\frac{1}{54}, \ d_3=0 \ \right]\\ \notag \\ &\therefore \quad A_2^{-1}=\frac{1}{18}+\frac{\omega}{9}-\frac{a_1}{54} \\ \end{align}