数学\(\mathtt{ VB } \ \)ガロア流方程式の解法技術
Profile
Name: scruta \(\quad\)
Daily life: mowing
Revision history
1st upload: 2023/06/17
revision2 : 2023/07/27
revision3 : 2024/12/22
revision4 : 2025/09/14
Contact
Step3 ILRT(Inverse Lagrange Resolvent Transformation) \begin{align} &\begin{bmatrix} \tilde{h_0} \\ \tilde{h_1} \\ \tilde{h_2} \end{bmatrix} = \begin{bmatrix} 1&1&1 \\ 1&\omega^2&(\omega^2)^2\\ 1&\omega&(\omega^2)\\ \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \\ \tilde{t_2} \end{bmatrix} \ \Longrightarrow \ \left\{ \begin{array}{l} g_1(x)=\tilde{h_0}\cdot \tilde{h_1} \cdot \tilde{h_2} \ \in \ F_1[x] \\ g_2(x) \equiv \tilde{h_0} \ \in \ F_2[x] \end{array} \right. \\ \end{align}
\begin{align} \begin{bmatrix} \tilde{h_0} \\ \tilde{h_1} \\ \tilde{h_2} \end{bmatrix} &= \begin{bmatrix} 1&1&1 \\ 1&\omega^2&\omega\\ 1&\omega&\omega^2 \end{bmatrix} \cdot \begin{bmatrix} t_0 \\ \tilde{t_1} \\ \tilde{t_2} \end{bmatrix} = \begin{bmatrix} t_0+\tilde{t_1}+\tilde{t_2}\\ t_0+\omega^2 \tilde{t_1}+\omega \tilde{t_2}\\ t_0+\omega \tilde{t_1}+\omega-2 \tilde{t_2} \end{bmatrix} \notag \\ \notag \\ &= \begin{bmatrix} x+a_2+a_2^2\left(-\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) \\ x+a_2\omega^2+a_2^2\omega\left(-\frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) \\ x+a_2\omega+a_2^2\omega^2\left(-\frac{\omega}{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) \end{bmatrix} \quad \in \ F_2[x] \\ \end{align}
\begin{align} &\tilde{h_0} \equiv g_2(x)=x+a_2+a_2^2\left(- \ \frac{\omega }{3}+\frac{{a_1}}{18}-\frac{1}{6}\right) \ \in F_2[x] \\ \notag \\ &g_2(x)=0 \quad \Rightarrow \quad v=-a_2+a_2^2\left(\ \frac{\omega }{3}-\frac{{a_1}}{18}+\frac{1}{6}\right) \ \in F_2 \\ \end{align}
\begin{align} \alpha&=\frac{v^4+15v^2-9v+36}{18} & \beta&=-\frac{{{v}^{4}}+15 {{v}^{2}}+36}{9} & \gamma&=\frac{{{v}^{4}}+15 {{v}^{2}}+9 v+36}{18} \\ \end{align}
\begin{align} &\alpha=\omega\left(-\frac{a_1a_2^2}{54}-\frac{a_2^2 }{6}+\frac{a_2}{3}\right)+\frac{{a_1} {{a}_{2}^{2}}}{54}-\frac{a_2^2}{6}+\frac{2a_2}{3}\\ &\beta=\omega\left(\frac{a_1a_2^2}{27}-\frac{2a_2}{3}\right)+\frac{a_1a_2^2}{54}+\frac{a_2^2}{6}-\frac{{a_2}}{3} \\ &\gamma=\omega\left(-\frac{a_1a_2^2}{54}+\frac{a_2^2}{6}+\frac{a_2}{3}\right)-\frac{a_1a_2^2}{27}-\frac{a_2}{3} \\ \end{align}
\begin{align} &\left\{ \begin{array}{l} B_1=a_1^2-A_1=0 \qquad A_1=-135 \qquad \quad a_1=\sqrt{A_1} \\ B_2=a_2^3-A_2=0 \qquad A_2=3\omega+\frac{a_1+3}{2} \quad a_2=\sqrt[3]{A_2}\\ \varOmega = \omega^2+ \omega +1 =0 \\ \end{array} \right. \\ \notag \\ &g_0(x)=(x-v_1)....(x-v_6)=x^6+18x^4+81x^2+135\\ \notag \\ &g_1(x)=(x-v_1)(x-v_4)(x-v_5)=x^3+9x+a_1\\ \notag \\ &g_2(x)=(x-v_1)=x+a_2^2\left(-\frac{\omega}{3}+\frac{a_1}{18}-\frac{1}{6}\right)+a_2 \\ \end{align}